These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 14723929)

  • 1. Removal of soft deposits from the distribution system improves the drinking water quality.
    Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T
    Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes.
    Lehtola MJ; Laxander M; Miettinen IT; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2006 Jun; 40(11):2151-60. PubMed ID: 16725175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].
    Wu Q; Zhao X; Yu Q; Li J
    Wei Sheng Yan Jiu; 2008 Jul; 37(4):405-8. PubMed ID: 18839520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.
    Lehtola MJ; Miettinen IT; Keinänen MM; Kekki TK; Laine O; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2004 Oct; 38(17):3769-79. PubMed ID: 15350429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of microbially available phosphorus (MAP) in flemish drinking water.
    Polanska M; Huysman K; Van Keer C
    Water Res; 2005 Jun; 39(11):2267-72. PubMed ID: 15936053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of Mycobacterium avium in a model distribution system.
    Norton CD; LeChevallier MW; Falkinham JO
    Water Res; 2004 Mar; 38(6):1457-66. PubMed ID: 15016522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.
    Ginige MP; Wylie J; Plumb J
    Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems.
    Lehtola MJ; Miettinen IT; Lampola T; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2005 May; 39(10):1962-71. PubMed ID: 15869778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms.
    Gagnon GA; Rand JL; O'leary KC; Rygel AC; Chauret C; Andrews RC
    Water Res; 2005 May; 39(9):1809-17. PubMed ID: 15899279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting bulk to total bacteria ratio in drinking water distribution systems.
    Srinivasan S; Harrington GW; Xagoraraki I; Goel R
    Water Res; 2008 Jul; 42(13):3393-404. PubMed ID: 18541283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system.
    Lee DG; Park SJ; Kim SJ
    J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.
    Mustonen SM; Tissari S; Huikko L; Kolehmainen M; Lehtola MJ; Hirvonen A
    Water Res; 2008 May; 42(10-11):2421-30. PubMed ID: 18295299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.
    Morton SC; Zhang Y; Edwards MA
    Water Res; 2005 Aug; 39(13):2883-92. PubMed ID: 16029882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft deposits, the key site for microbial growth in drinking water distribution networks.
    Zacheus OM; Lehtola MJ; Korhonen LK; Martikainen PJ
    Water Res; 2001 May; 35(7):1757-65. PubMed ID: 11329678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water.
    Chu C; Lu C
    Chemosphere; 2004 Nov; 57(7):531-9. PubMed ID: 15488914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of humic substances in regrowth.
    Camper AK
    Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic simulation of multicomponent reaction transport in water distribution systems.
    Munavalli GR; Mohan Kumar MS
    Water Res; 2004 Apr; 38(8):1971-88. PubMed ID: 15087178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.
    Lautenschlager K; Boon N; Wang Y; Egli T; Hammes F
    Water Res; 2010 Sep; 44(17):4868-77. PubMed ID: 20696451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contamination potential of drinking water distribution network biofilms.
    Wingender J; Flemming HC
    Water Sci Technol; 2004; 49(11-12):277-86. PubMed ID: 15303752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.