BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 14723974)

  • 41. Polarized distribution of ion channels within microdomains of the axon initial segment.
    Van Wart A; Trimmer JS; Matthews G
    J Comp Neurol; 2007 Jan; 500(2):339-52. PubMed ID: 17111377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Changes in extracellular K+ concentration modulate properties of voltage dependent K+ channel conductance in PC-12 cells].
    Boĭko NIa; Kucher VV; Pohoriela NKh; Mahura IS
    Fiziol Zh (1994); 2004; 50(4):57-61. PubMed ID: 15460028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A structural interpretation of voltage-gated potassium channel inactivation.
    Kurata HT; Fedida D
    Prog Biophys Mol Biol; 2006 Oct; 92(2):185-208. PubMed ID: 16316679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids?
    Guéguinou M; Gambade A; Félix R; Chantôme A; Fourbon Y; Bougnoux P; Weber G; Potier-Cartereau M; Vandier C
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2603-20. PubMed ID: 25450343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms.
    Bock J; Szabó I; Gamper N; Adams C; Gulbins E
    Biochem Biophys Res Commun; 2003 Jun; 305(4):890-7. PubMed ID: 12767914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Caveolin interaction governs Kv1.3 lipid raft targeting.
    Pérez-Verdaguer M; Capera J; Martínez-Mármol R; Camps M; Comes N; Tamkun MM; Felipe A
    Sci Rep; 2016 Mar; 6():22453. PubMed ID: 26931497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels.
    Krogman WL; Woodard T; McKay RSF
    Anesth Analg; 2024 Jul; 139(1):92-106. PubMed ID: 37968836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid rafts, the sarcoplasmic reticulum and uterine calcium signalling: an integrated approach.
    Noble K; Zhang J; Wray S
    J Physiol; 2006 Jan; 570(Pt 1):29-35. PubMed ID: 16239270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. KV10.1 K(+)-channel plasma membrane discrete domain partitioning and its functional correlation in neurons.
    Jiménez-Garduño AM; Mitkovski M; Alexopoulos IK; Sánchez A; Stühmer W; Pardo LA; Ortega A
    Biochim Biophys Acta; 2014 Mar; 1838(3):921-31. PubMed ID: 24269539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical Analysis of Lipid Rafts to Study Pathogenic Mechanisms of Neural Diseases.
    Bongarzone ER; Givogri MI
    Methods Mol Biol; 2021; 2187():37-46. PubMed ID: 32770500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Social networking among voltage-activated potassium channels.
    Brueggemann LI; Gentile S; Byron KL
    Prog Mol Biol Transl Sci; 2013; 117():269-302. PubMed ID: 23663972
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential expression of potassium channels in placentas from normal and pathological pregnancies: targeting of the K(ir) 2.1 channel to lipid rafts.
    Riquelme G; de Gregorio N; Vallejos C; Berrios M; Morales B
    J Membr Biol; 2012 Mar; 245(3):141-50. PubMed ID: 22391579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional clustering and coupling of ion channels in cellular mechanosensing is independent on lipid raft integrity in plasma membrane.
    Chubinskiy-Nadezhdin VI; Vasileva VY; Negulyaev YA; Morachevskaya EA
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118764. PubMed ID: 32479769
    [No Abstract]   [Full Text] [Related]  

  • 57. Plasticity in membrane cholesterol contributes toward electrical maturation of hearing.
    Levic S; Yamoah EN
    J Biol Chem; 2011 Feb; 286(7):5768-73. PubMed ID: 21163952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support.
    Siddiqui RA; Harvey KA; Zaloga GP; Stillwell W
    Nutr Clin Pract; 2007 Feb; 22(1):74-88. PubMed ID: 17242459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains.
    Krager KJ; Koland JG
    Methods Mol Biol; 2016; 1376():87-96. PubMed ID: 26552677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sphingolipids in lipid microdomains and obesity.
    Mitsutake S; Igarashi Y
    Vitam Horm; 2013; 91():271-84. PubMed ID: 23374721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.