BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14724201)

  • 21. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of presynaptic GABAB receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body.
    Luo B; Wang HT; Su YY; Wu SH; Chen L
    Hear Res; 2011 Oct; 280(1-2):157-65. PubMed ID: 21664264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional differences in the control of neuronal transmission in the lateral geniculate nucleus during conditioning in rats.
    Albrecht D; Davidowa H; Gabriel HJ
    Biomed Biochim Acta; 1991; 50(1):61-70. PubMed ID: 1650190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice.
    Abidin I; Köhler T; Weiler E; Zoidl G; Eysel UT; Lessmann V; Mittmann T
    Eur J Neurosci; 2006 Dec; 24(12):3519-31. PubMed ID: 17229100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinal and Tectal "Driver-Like" Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus.
    Bickford ME; Zhou N; Krahe TE; Govindaiah G; Guido W
    J Neurosci; 2015 Jul; 35(29):10523-34. PubMed ID: 26203147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term depression of synaptic transmission from rat lateral geniculate nucleus to primary visual cortex in vivo.
    Jia F; Xie X; Zhou Y
    Brain Res; 2004 Mar; 1002(1-2):158-61. PubMed ID: 14988046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem.
    MacLeod KM; Horiuchi TK; Carr CE
    J Neurophysiol; 2007 Apr; 97(4):2863-74. PubMed ID: 17251365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coincident glutamatergic and cholinergic inputs transiently depress glutamate release at rat schaffer collateral synapses.
    Gipson KE; Yeckel MF
    J Neurophysiol; 2007 Jun; 97(6):4108-19. PubMed ID: 17303811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1.
    de Labra C; Rivadulla C; Grieve K; Mariño J; Espinosa N; Cudeiro J
    Cereb Cortex; 2007 Jun; 17(6):1376-85. PubMed ID: 16908494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.
    Jeong SG; Choi IS; Cho JH; Jang IS
    Neuropharmacology; 2013 Dec; 75():295-303. PubMed ID: 23954675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical feedback to the thalamus is selectively enhanced by nitric oxide.
    Alexander GM; Kurukulasuriya NC; Mu J; Godwin DW
    Neuroscience; 2006 Sep; 142(1):223-34. PubMed ID: 16876956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus.
    Shen KZ; Johnson SW
    J Physiol; 2003 Dec; 553(Pt 2):489-96. PubMed ID: 14500768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus.
    Farazifard R; Wu SH
    Brain Res; 2010 Apr; 1325():28-40. PubMed ID: 20153735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical injury affects short-term plasticity of evoked excitatory synaptic currents.
    Li H; Bandrowski AE; Prince DA
    J Neurophysiol; 2005 Jan; 93(1):146-56. PubMed ID: 15342719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological Investigations of Retinogeniculate and Corticogeniculate Synapse Function.
    Chen X; Wang D; Kegel M; von Engelhardt J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrastructural and functional evidence for the survival of corticogeniculate neurons in kainic acid-lesioned lateral geniculate nucleus.
    Woodward WR; Meshul CK; Coull BM
    Brain Res; 1989 Aug; 494(1):42-54. PubMed ID: 2548672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.
    Glovaci I; Caruana DA; Chapman CA
    Neuroscience; 2014 Jan; 258():74-83. PubMed ID: 24220689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Evidence for glutamatergic neurotransmission in the geniculo-cortical pathway in the rat].
    Palomares JM; Sáez JA; Domínguez I; Villegas V; Montes R; Ferrer JM
    Arch Soc Esp Oftalmol; 2000 Jun; 75(6):389-96. PubMed ID: 11151183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical activity regulates corticothalamic synapses in dorsal lateral geniculate nucleus of rats.
    Yoshida M; Satoh T; Nakamura KC; Kaneko T; Hata Y
    Neurosci Res; 2009 May; 64(1):118-27. PubMed ID: 19428690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopaminergic control of local interneuron activity in the thalamus.
    Munsch T; Yanagawa Y; Obata K; Pape HC
    Eur J Neurosci; 2005 Jan; 21(1):290-4. PubMed ID: 15654868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.