BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 14724208)

  • 1. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes.
    Zima AV; Copello JA; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):727-41. PubMed ID: 14724208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes.
    Zima AV; Kockskämper J; Blatter LA
    J Physiol; 2006 Nov; 577(Pt 1):281-93. PubMed ID: 16945967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes.
    Mazurek SR; Bovo E; Zima AV
    Free Radic Biol Med; 2014 Mar; 68():159-67. PubMed ID: 24334252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes.
    Kockskämper J; Zima AV; Blatter LA
    J Physiol; 2005 May; 564(Pt 3):697-714. PubMed ID: 15695247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes.
    Lukyanenko V; Viatchenko-Karpinski S; Smirnov A; Wiesner TF; Györke S
    Biophys J; 2001 Aug; 81(2):785-98. PubMed ID: 11463625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Ca(2+) sparks by ruthenium red in permeabilized rat ventricular myocytes.
    Lukyanenko V; Györke I; Subramanian S; Smirnov A; Wiesner TF; Györke S
    Biophys J; 2000 Sep; 79(3):1273-84. PubMed ID: 10968991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes.
    Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J
    J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiation of Ca(2+) release by cADP-ribose in the heart is mediated by enhanced SR Ca(2+) uptake into the sarcoplasmic reticulum.
    Lukyanenko V; Györke I; Wiesner TF; Györke S
    Circ Res; 2001 Sep; 89(7):614-22. PubMed ID: 11577027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced Ca2+ release.
    Li S; Cheng H; Tomaselli GF; Li RA
    Heart Rhythm; 2014 Jan; 11(1):133-40. PubMed ID: 24096168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.
    Cherednichenko G; Zima AV; Feng W; Schaefer S; Blatter LA; Pessah IN
    Circ Res; 2004 Mar; 94(4):478-86. PubMed ID: 14699012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes.
    Zima AV; Qin J; Fill M; Blatter LA
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H2008-16. PubMed ID: 18790837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca²+ spark-dependent and -independent sarcoplasmic reticulum Ca²+ leak in normal and failing rabbit ventricular myocytes.
    Zima AV; Bovo E; Bers DM; Blatter LA
    J Physiol; 2010 Dec; 588(Pt 23):4743-57. PubMed ID: 20962003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes.
    Sheehan KA; Zima AV; Blatter LA
    J Physiol; 2006 May; 572(Pt 3):799-809. PubMed ID: 16484302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMKIIδC slows [Ca]i decline in cardiac myocytes by promoting Ca sparks.
    Guo T; Zhang T; Ginsburg KS; Mishra S; Brown JH; Bers DM
    Biophys J; 2012 Jun; 102(11):2461-70. PubMed ID: 22713561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent effects of halothane on SR Ca2+ regulation in permeabilized atrial myocytes.
    Yang Z; Harrison SM; Steele DS
    Cardiovasc Res; 2005 Jan; 65(1):167-76. PubMed ID: 15621044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes.
    Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J
    J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ouabain increases sarcoplasmic reticulum calcium release in cardiac myocytes.
    Nishio M; Ruch SW; Kelly JE; Aistrup GL; Sheehan K; Wasserstrom JA
    J Pharmacol Exp Ther; 2004 Mar; 308(3):1181-90. PubMed ID: 14634043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic Ca²⁺ buffering determines the intra-SR Ca²⁺ concentration at which cardiac Ca²⁺ sparks terminate.
    Bovo E; Mazurek SR; Fill M; Zima AV
    Cell Calcium; 2015 Sep; 58(3):246-53. PubMed ID: 26095947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.