BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 14724241)

  • 1. Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice.
    Cheron G; Gall D; Servais L; Dan B; Maex R; Schiffmann SN
    J Neurosci; 2004 Jan; 24(2):434-41. PubMed ID: 14724241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast oscillation in the cerebellar cortex of calcium binding protein-deficient mice: a new sensorimotor arrest rhythm.
    Cheron G; Servais L; Dan B; Gall D; Roussel C; Schiffmann SN
    Prog Brain Res; 2005; 148():165-80. PubMed ID: 15661189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin.
    Schiffmann SN; Cheron G; Lohof A; d'Alcantara P; Meyer M; Parmentier M; Schurmans S
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5257-62. PubMed ID: 10220453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar network plasticity: from genes to fast oscillation.
    Cheron G; Servais L; Dan B
    Neuroscience; 2008 Apr; 153(1):1-19. PubMed ID: 18359574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene.
    Airaksinen MS; Eilers J; Garaschuk O; Thoenen H; Konnerth A; Meyer M
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1488-93. PubMed ID: 9037080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin.
    Gall D; Roussel C; Susa I; D'Angelo E; Rossi P; Bearzatto B; Galas MC; Blum D; Schurmans S; Schiffmann SN
    J Neurosci; 2003 Oct; 23(28):9320-7. PubMed ID: 14561859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells.
    Traub RD; Middleton SJ; Knöpfel T; Whittington MA
    Eur J Neurosci; 2008 Oct; 28(8):1603-16. PubMed ID: 18973579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination.
    Barski JJ; Hartmann J; Rose CR; Hoebeek F; Mörl K; Noll-Hussong M; De Zeeuw CI; Konnerth A; Meyer M
    J Neurosci; 2003 Apr; 23(8):3469-77. PubMed ID: 12716955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation.
    Servais L; Cheron G
    Neuroscience; 2005; 134(4):1247-59. PubMed ID: 16054763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k.
    Kreiner L; Christel CJ; Benveniste M; Schwaller B; Lee A
    J Neurophysiol; 2010 Jan; 103(1):371-81. PubMed ID: 19906882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-binding proteins in primate cerebellum.
    Fortin M; Marchand R; Parent A
    Neurosci Res; 1998 Feb; 30(2):155-68. PubMed ID: 9579649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant synchronization in heterogeneous networks of inhibitory neurons.
    Maex R; De Schutter E
    J Neurosci; 2003 Nov; 23(33):10503-14. PubMed ID: 14627634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex.
    Nunzi MG; Birnstiel S; Bhattacharyya BJ; Slater NT; Mugnaini E
    J Comp Neurol; 2001 Jun; 434(3):329-41. PubMed ID: 11331532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of calcium binding protein mRNAs in rat cerebellar cortex.
    Kadowaki K; McGowan E; Mock G; Chandler S; Emson PC
    Neurosci Lett; 1993 Apr; 153(1):80-4. PubMed ID: 8510828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells.
    Schwaller B
    Biochim Biophys Acta; 2012 Aug; 1820(8):1294-303. PubMed ID: 22138448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice.
    Dove LS; Nahm SS; Murchison D; Abbott LC; Griffith WH
    J Neurophysiol; 2000 Jul; 84(1):513-24. PubMed ID: 10899223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of calbindin D28k, calretinin and parvalbumin in the cerebellum of pups of ethanol-treated female rats.
    Wierzba-Bobrowicz T; Lewandowska E; Stępień T; Szpak GM
    Folia Neuropathol; 2011; 49(1):47-55. PubMed ID: 21455843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking oscillations in cerebellar circuits.
    Courtemanche R; Robinson JC; Aponte DI
    Front Neural Circuits; 2013; 7():125. PubMed ID: 23908606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum.
    Yew DT; Luo CB; Heizmann CW; Chan WY
    Brain Res Dev Brain Res; 1997 Oct; 103(1):37-45. PubMed ID: 9370058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.