These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14724265)

  • 1. Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window.
    Yvert B; Branchereau P; Meyrand P
    J Neurophysiol; 2004 May; 91(5):2101-9. PubMed ID: 14724265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord.
    Ren J; Greer JJ
    J Neurophysiol; 2003 Mar; 89(3):1187-95. PubMed ID: 12626606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro.
    Eugenín J; von Bernhardi R; Muller KJ; Llona I
    Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythmic motor activity in thin transverse slice preparations of the fetal rat spinal cord.
    Nakayama K; Nishimaru H; Kudo N
    J Neurophysiol; 2004 Jul; 92(1):648-52. PubMed ID: 15028747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter.
    Fujii M; Arata A; Kanbara-Kume N; Saito K; Yanagawa Y; Obata K
    Neuroscience; 2007 May; 146(3):1044-52. PubMed ID: 17418495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord.
    Allain AE; Baïri A; Meyrand P; Branchereau P
    Brain Res; 2004 Mar; 1000(1-2):134-47. PubMed ID: 15053961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage-specific expression of alkaline phosphatase during neural development in the mouse.
    Narisawa S; Hasegawa H; Watanabe K; Millán JL
    Dev Dyn; 1994 Nov; 201(3):227-35. PubMed ID: 7533563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity.
    Allain AE; Baïri A; Meyrand P; Branchereau P
    J Comp Neurol; 2006 Jun; 496(6):832-46. PubMed ID: 16628621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks.
    Rigato C; Buckinx R; Le-Corronc H; Rigo JM; Legendre P
    Glia; 2011 Apr; 59(4):675-95. PubMed ID: 21305616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N; Arata A; Obata K
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat.
    Yamamoto Y; Henderson CE
    Dev Biol; 1999 Oct; 214(1):60-71. PubMed ID: 10491257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS.
    Momose-Sato Y; Sato K; Kinoshita M
    Eur J Neurosci; 2007 Feb; 25(4):929-44. PubMed ID: 17331191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rostrocaudal progression in the development of periodic spontaneous activity in fetal rat spinal motor circuits in vitro.
    Nakayama K; Nishimaru H; Iizuka M; Ozaki S; Kudo N
    J Neurophysiol; 1999 May; 81(5):2592-5. PubMed ID: 10322093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spontaneous activity of the developing neuronal networks].
    Sheroziia MG; Egorov AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(4):387-96. PubMed ID: 20873128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhythmic neuronal discharge in the medulla and spinal cord of fetal rats in the absence of synaptic transmission.
    Ren J; Momose-Sato Y; Sato K; Greer JJ
    J Neurophysiol; 2006 Jan; 95(1):527-34. PubMed ID: 16148265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local oscillations of spiking activity in organotypic spinal cord slice cultures.
    Czarnecki A; Magloire V; Streit J
    Eur J Neurosci; 2008 Apr; 27(8):2076-88. PubMed ID: 18412628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.