These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 14725445)

  • 41. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.
    Ling KQ; Li WS; Sayre LM
    J Am Chem Soc; 2008 Jan; 130(3):933-44. PubMed ID: 18163622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics and mechanism of hydrolysis of N-acyloxymethyl derivatives of azetidin-2-one.
    Valente E; Gomes JR; Moreira R; Iley J
    J Org Chem; 2004 May; 69(10):3359-67. PubMed ID: 15132543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics and mechanisms of the pyridinolysis of phenyl and 4-nitrophenyl chlorothionoformates. Formation and hydrolysis of 1-(aryloxythiocarbonyl)pyridinium cations.
    Castro EA; Cubillos M; Santos JG
    J Org Chem; 2004 Jul; 69(14):4802-7. PubMed ID: 15230606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electronic nature of substituent X governs reaction mechanism in aminolysis of 4-pyridyl X-substituted-benzoates in acetonitrile.
    Um IH; Bae AR
    J Org Chem; 2012 Jul; 77(13):5781-7. PubMed ID: 22668080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleophilic aminoalcohol-catalyzed degradation of indomethacin in aqueous solution.
    Tomida H; Kuwada N; Tsuruta Y; Kohashi K; Kiryu S
    Pharm Acta Helv; 1989; 64(11):312-5. PubMed ID: 2608690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aminolysis of O-aryl thionobenzoates: amine basicity combines with modulation of the nature of substituents in the leaving group and thionobenzoate moiety to control the reaction mechanism.
    Um IH; Hwang SJ; Yoon S; Jeon SE; Bae SK
    J Org Chem; 2008 Oct; 73(19):7671-7. PubMed ID: 18767804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The alpha-effect in reactions of sp-hybridized carbon atom: Michael-type reactions of 1-aryl-2-propyn-1-ones with primary amines.
    Um IH; Lee EJ; Seok JA; Kim KH
    J Org Chem; 2005 Sep; 70(19):7530-6. PubMed ID: 16149780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aminolysis of aryl chlorothionoformates with anilines in acetonitrile: effects of amine nature and solvent on the mechanism.
    Oh HK; Ha JS; Sung DD; Lee I
    J Org Chem; 2004 Nov; 69(24):8219-23. PubMed ID: 15549790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beta-lactamase-catalyzed aminolysis of depsipeptides: amine specificity and steady-state kinetics.
    Pazhanisamy S; Govardhan CP; Pratt RF
    Biochemistry; 1989 Aug; 28(17):6863-70. PubMed ID: 2819039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for a catalytic six-membered cyclic transition state in aminolysis of 4-nitrophenyl 3,5-dinitrobenzoate in acetonitrile: comparative brønsted-type plot, entropy of activation, and deuterium kinetic isotope effects.
    Um IH; Kim MY; Bae AR; Dust JM; Buncel E
    J Org Chem; 2015 Jan; 80(1):217-22. PubMed ID: 25438168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of amine-catalyzed organosilicate hydrolysis at circum-neutral pH.
    Delak KM; Sahai N
    J Phys Chem B; 2006 Sep; 110(36):17819-29. PubMed ID: 16956268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 1,4,7,10-tetraazacyclododecane metal complexes as potent promoters of carboxyester hydrolysis under physiological conditions.
    Subat M; Woinaroschy K; Anthofer S; Malterer B; König B
    Inorg Chem; 2007 May; 46(10):4336-56. PubMed ID: 17444638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aminolyses of aryl diphenylphosphinates and diphenylphosphinothioates: effect of modification of electrophilic center from P=O to P=S.
    Um IH; Akhtar K; Shin YH; Han JY
    J Org Chem; 2007 May; 72(10):3823-9. PubMed ID: 17425371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative stability of cephalosporins in aqueous solution: kinetics and mechanisms of degradation.
    Yamana T; Tsuji A
    J Pharm Sci; 1976 Nov; 65(11):1563-74. PubMed ID: 11330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanism of ceftazidime degradation in aqueous solutions.
    Zajac M; Siwek J; Muszalska I
    Acta Pol Pharm; 1998; 55(4):275-8. PubMed ID: 9821392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester.
    Nagy P; Ashby MT
    Chem Res Toxicol; 2007 Sep; 20(9):1364-72. PubMed ID: 17764150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and mechanism of the aminolysis of aryl thiocarbamates: effects of the non-leaving group.
    Oh HK; Jin YC; Sung DD; Lee I
    Org Biomol Chem; 2005 Apr; 3(7):1240-4. PubMed ID: 15785813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ester hydrolysis by a cyclodextrin dimer catalyst with a tridentate N,N',N''-zinc linking group.
    Tang SP; Zhou YH; Chen HY; Zhao CY; Mao ZW; Ji LN
    Chem Asian J; 2009 Aug; 4(8):1354-60. PubMed ID: 19579255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amidine nitrosation.
    Loeppky RN; Yu H
    J Org Chem; 2004 Apr; 69(9):3015-24. PubMed ID: 15104439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic studies on the stability and reactivity of beta-amino alkylzinc iodides derived from amino acids.
    Rilatt I; Jackson RF
    J Org Chem; 2008 Nov; 73(22):8694-704. PubMed ID: 18855456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.