BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14725861)

  • 1. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana.
    Xie DY; Sharma SB; Dixon RA
    Arch Biochem Biophys; 2004 Feb; 422(1):91-102. PubMed ID: 14725861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis.
    Xie DY; Sharma SB; Paiva NL; Ferreira D; Dixon RA
    Science; 2003 Jan; 299(5605):396-9. PubMed ID: 12532018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula.
    Zhu Y; Peng QZ; Li KG; Xie DY
    Planta; 2014 Aug; 240(2):381-98. PubMed ID: 24880552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and Functional Characterization of Anthocyanidin Reductase (ANR) from
    Tan L; Wang M; Kang Y; Azeem F; Zhou Z; Tuo D; María Preciado Rojo L; Khan IA; Pan Z
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula.
    Xie DY; Jackson LA; Cooper JD; Ferreira D; Paiva NL
    Plant Physiol; 2004 Mar; 134(3):979-94. PubMed ID: 14976232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera.
    Gargouri M; Manigand C; Maugé C; Granier T; Langlois d'Estaintot B; Cala O; Pianet I; Bathany K; Chaudière J; Gallois B
    Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):989-1000. PubMed ID: 19690377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant biology. Seeing red.
    Bartel B; Matsuda SP
    Science; 2003 Jan; 299(5605):352-3. PubMed ID: 12532002
    [No Abstract]   [Full Text] [Related]  

  • 8. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers.
    Gargouri M; Chaudière J; Manigand C; Maugé C; Bathany K; Schmitter JM; Gallois B
    Biol Chem; 2010; 391(2-3):219-227. PubMed ID: 20030585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.
    Pang Y; Cheng X; Huhman DV; Ma J; Peel GJ; Yonekura-Sakakibara K; Saito K; Shen G; Sumner LW; Tang Y; Wen J; Yun J; Dixon RA
    Planta; 2013 Jul; 238(1):139-54. PubMed ID: 23592226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum).
    Zhu Y; Wang H; Peng Q; Tang Y; Xia G; Wu J; Xie DY
    Planta; 2015 May; 241(5):1075-89. PubMed ID: 25575669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis) Cultivar in the Field.
    Zhao L; Jiang XL; Qian YM; Wang PQ; Xie DY; Gao LP; Xia T
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29244739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of anthocyanidin reductase from Shuchazao green tea.
    Zhang X; Liu Y; Gao K; Zhao L; Liu L; Wang Y; Sun M; Gao L; Xia T
    J Sci Food Agric; 2012 May; 92(7):1533-9. PubMed ID: 22173936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies.
    d'Andréa S; Canonge M; Beopoulos A; Jolivet P; Hartmann MA; Miquel M; Lepiniec L; Chardot T
    Biochimie; 2007 Feb; 89(2):222-9. PubMed ID: 17074428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development.
    Devic M; Guilleminot J; Debeaujon I; Bechtold N; Bensaude E; Koornneef M; Pelletier G; Delseny M
    Plant J; 1999 Aug; 19(4):387-98. PubMed ID: 10504561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding-equilibrium and kinetic studies of anthocyanidin reductase from Vitis vinifera.
    Gargouri M; Gallois B; Chaudière J
    Arch Biochem Biophys; 2009 Nov; 491(1-2):61-8. PubMed ID: 19772852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
    Peel GJ; Pang Y; Modolo LV; Dixon RA
    Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways.
    Punyasiri PA; Abeysinghe IS; Kumar V; Treutter D; Duy D; Gosch C; Martens S; Forkmann G; Fischer TC
    Arch Biochem Biophys; 2004 Nov; 431(1):22-30. PubMed ID: 15464723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases.
    Hao MS; Rasmusson AG
    Physiol Plant; 2016 Jul; 157(3):338-51. PubMed ID: 27079180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.