These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14726208)

  • 1. ATPase activity of non-ribosomal peptide synthetases.
    Pavela-Vrancic M; Dieckmann R; von Döhren H
    Biochim Biophys Acta; 2004 Jan; 1696(1):83-91. PubMed ID: 14726208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of (di)adenosine polyphosphates by non-ribosomal peptide synthetases (NRPS).
    Dieckmann R; Pavela-Vrancic M; von Döhren H
    Biochim Biophys Acta; 2001 Mar; 1546(1):234-41. PubMed ID: 11257526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three conserved glycine residues in valine activation of gramicidin S synthetase 2 from Bacillus brevis.
    Saito M; Hori K; Kurotsu T; Kanda M; Saito Y
    J Biochem; 1995 Feb; 117(2):276-82. PubMed ID: 7608112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation.
    Tokita K; Hori K; Kurotsu T; Kanda M; Saito Y
    J Biochem; 1993 Oct; 114(4):522-7. PubMed ID: 8276762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editing of non-cognate aminoacyl adenylates by peptide synthetases.
    Pavela-Vrancic M; Dieckmann R; Döhren HV; Kleinkauf H
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):715-9. PubMed ID: 10477284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipeptide synthesis by an isolated adenylate-forming domain of non-ribosomal peptide synthetases (NRPS).
    Dieckmann R; Neuhof T; Pavela-Vrancic M; von Döhren H
    FEBS Lett; 2001 Jun; 498(1):42-5. PubMed ID: 11389895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between activating and editing functions of the adenylation domain of apo-tyrocidin synthetase 1 (apo-TY1).
    Bucević-Popović V; Pavela-Vrancic M; Dieckmann R; Von Döhren H
    Biochimie; 2006; 88(3-4):265-70. PubMed ID: 16182433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioesterase domain of delta-(l-alpha-Aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis.
    Kallow W; Kennedy J; Arezi B; Turner G; von Döhren H
    J Mol Biol; 2000 Mar; 297(2):395-408. PubMed ID: 10715209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site titration of gramicidin S synthetase 2: evidence for misactivation and editing in non-ribosomal peptide biosynthesis.
    Kittelberger R; Pavela-Vrancic M; von Döhren H
    FEBS Lett; 1999 Nov; 461(3):145-8. PubMed ID: 10567686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis.
    Abe T; Kobayashi K; Kawamura S; Sakaguchi T; Shiiba K; Kobayashi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):1-10. PubMed ID: 29899192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases.
    Linne U; Doekel S; Marahiel MA
    Biochemistry; 2001 Dec; 40(51):15824-34. PubMed ID: 11747460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonribosomal peptide synthetases-evidence for a second ATP-binding site.
    Kallow W; Pavela-Vrancic M; Dieckmann R; von Döhren H
    Biochim Biophys Acta; 2002 Nov; 1601(1):93-9. PubMed ID: 12429507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
    Ehmann DE; Trauger JW; Stachelhaus T; Walsh CT
    Chem Biol; 2000 Oct; 7(10):765-72. PubMed ID: 11033080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases.
    Dieckmann R; Lee YO; van Liempt H; von Döhren H; Kleinkauf H
    FEBS Lett; 1995 Jan; 357(2):212-6. PubMed ID: 7805893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.
    Challis GL; Ravel J; Townsend CA
    Chem Biol; 2000 Mar; 7(3):211-24. PubMed ID: 10712928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity of the yersiniabactin synthetase adenylation domain in the two-step process of amino acid activation and transfer to a holo-carrier protein domain.
    Keating TA; Suo Z; Ehmann DE; Walsh CT
    Biochemistry; 2000 Mar; 39(9):2297-306. PubMed ID: 10694396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group specific antibodies against the putative AMP-binding domain signature SGTTGXPKG in peptide synthetases and related enzymes.
    Etchegaray A; Dieckmann R; Engel PC; Turner G; von Döhren H
    Biochem Mol Biol Int; 1998 Feb; 44(2):235-43. PubMed ID: 9530507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of essential arginine residues in Gramicidin S synthetase 2 and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Miura S; Yamada Y; Saito Y
    J Biochem; 1982 Dec; 92(6):1951-7. PubMed ID: 6761339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase.
    Schlumbohm W; Stein T; Ullrich C; Vater J; Krause M; Marahiel MA; Kruft V; Wittmann-Liebold B
    J Biol Chem; 1991 Dec; 266(34):23135-41. PubMed ID: 1744112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis.
    Pfeifer E; Pavela-Vrancic M; von Döhren H; Kleinkauf H
    Biochemistry; 1995 Jun; 34(22):7450-9. PubMed ID: 7779788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.