These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14726426)

  • 1. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle.
    Syme DA; Tonks DM
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R916-26. PubMed ID: 14726426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of K+ on the recovery of the twitch and tetanic force following fatigue in the sartorius muscle of the frog, Rana pipiens.
    Renaud JM; Comtois A
    J Muscle Res Cell Motil; 1994 Aug; 15(4):420-31. PubMed ID: 7806636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges.
    Nocella M; Colombini B; Benelli G; Cecchi G; Bagni MA; Bruton J
    J Physiol; 2011 Jul; 589(Pt 13):3371-81. PubMed ID: 21540343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
    Corr DT; Herzog W
    J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states.
    Lee EJ; Herzog W
    J Biomech; 2009 Oct; 42(14):2336-40. PubMed ID: 19651411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-velocity relationship during isometric and isotonic fatiguing contractions.
    Devrome AN; MacIntosh BR
    J Appl Physiol (1985); 2018 Sep; 125(3):706-714. PubMed ID: 29856265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle.
    De Ruiter CJ; Jones DA; Sargeant AJ; De Haan A
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):386-93. PubMed ID: 10483811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional variation in the mechanical properties and fibre-type composition of the rat extensor digitorum longus muscle.
    Kissane RWP; Egginton S; Askew GN
    Exp Physiol; 2018 Jan; 103(1):111-124. PubMed ID: 29076192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles.
    Hamada T; Sale DG; MacDougall JD; Tarnopolsky MA
    Acta Physiol Scand; 2003 Jun; 178(2):165-73. PubMed ID: 12780391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fatigue-related changes in dynamic and static components of eccentric contraction of the gastrocnemius muscle in the narcotized cat].
    Buhaĭchenko LA
    Fiziol Zh (1994); 2004; 50(3):85-91. PubMed ID: 15320436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue.
    Westerblad H; Allen DG; Bruton JD; Andrade FH; Lännergren J
    Acta Physiol Scand; 1998 Mar; 162(3):253-60. PubMed ID: 9578370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle fatigue in frog semitendinosus: alterations in contractile function.
    Thompson LV; Balog EM; Riley DA; Fitts RH
    Am J Physiol; 1992 Jun; 262(6 Pt 1):C1500-6. PubMed ID: 1535482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical behaviour of rat skeletal muscle during fatiguing stretch-shortening cycles.
    Ettema GJ
    Exp Physiol; 1997 Jan; 82(1):107-19. PubMed ID: 9023510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.