BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 14726469)

  • 21. Monitoring gene expression: quantitative real-time rt-PCR.
    Wagner EM
    Methods Mol Biol; 2013; 1027():19-45. PubMed ID: 23912981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies.
    Lossos IS; Czerwinski DK; Wechser MA; Levy R
    Leukemia; 2003 Apr; 17(4):789-95. PubMed ID: 12682639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Detection of MYCN mRNA in neuroblastoma cell lines by quantitative RT-PCR].
    Feng C; Tang SQ; Wang JW; Liu LZ; Gao XN; Long H
    Zhongguo Dang Dai Er Ke Za Zhi; 2007 Feb; 9(1):47-50. PubMed ID: 17306077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance Comparison of Reverse Transcriptases for Single-Cell Studies.
    Zucha D; Androvic P; Kubista M; Valihrach L
    Clin Chem; 2020 Jan; 66(1):217-228. PubMed ID: 31699702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rapid real-time qRT-PCR assay for ovine beta-actin mRNA.
    Bjarnadottir H; Jonsson JJ
    J Biotechnol; 2005 May; 117(2):173-82. PubMed ID: 15823406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA-specific reverse transcription-polymerase chain reaction from human tissue extracts.
    Hurteau GJ; Spivack SD
    Anal Biochem; 2002 Aug; 307(2):304-15. PubMed ID: 12202248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies.
    Moniotte S; Vaerman JL; Kockx MM; Larrouy D; Langin D; Noirhomme P; Balligand JL
    J Mol Cell Cardiol; 2001 Dec; 33(12):2121-33. PubMed ID: 11735259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of reference genes for normalization of the quantitative polymerase chain reaction in tissue samples of gastric cancer.
    Zhao LM; Zheng ZX; Zhao X; Shi J; Bi JJ; Pei W; Feng Q
    Asian Pac J Cancer Prev; 2014; 15(14):5815-8. PubMed ID: 25081706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients.
    Carow K; Read C; Häfner N; Runnebaum IB; Corner A; Dürst M
    BMC Res Notes; 2017 Oct; 10(1):532. PubMed ID: 29084579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise.
    Bengtsson M; Hemberg M; Rorsman P; Ståhlberg A
    BMC Mol Biol; 2008 Jul; 9():63. PubMed ID: 18631407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reverse transcription-polymerase chain reaction.
    Rio DC
    Cold Spring Harb Protoc; 2014 Nov; 2014(11):1207-16. PubMed ID: 25368309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate Real-time Reverse Transcription Quantitative PCR.
    Klatte M; Bauer P
    Methods Mol Biol; 2009; 479():61-77. PubMed ID: 19083175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Similar sequence-free amplification of human glyceraldehyde-3-phosphate dehydrogenase for real time RT-PCR applications.
    Carraro G; Albertin G; Forneris M; Nussdorfer GG
    Mol Cell Probes; 2005 Jun; 19(3):181-6. PubMed ID: 15797818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-in-one tube method for quantitative gene expression analysis in oligo-dT(30) immobilized PCR tube coated with MPC polymer.
    Tanaka A; Harikai N; Saito S; Yakabe T; Funaoka S; Yokoyama K; Fujiwara K; Iwao-Koizumi K; Murata S; Kinoshita K
    Anal Sci; 2009 Jan; 25(1):109-14. PubMed ID: 19139583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian modeling of reproducibility and robustness of RNA reverse transcription and quantitative real-time polymerase chain reaction.
    Lindén J; Ranta J; Pohjanvirta R
    Anal Biochem; 2012 Sep; 428(1):81-91. PubMed ID: 22713341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative reverse transcriptase-polymerase chain reaction of glucose transporter 1 mRNA levels in rat brain microvessels.
    Wadhwani KC; Fukuyama R; Giordano T; Rapoport SI; Chandrasekaran K
    Anal Biochem; 1993 Nov; 215(1):134-41. PubMed ID: 7507649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circulating placental RNA in maternal plasma is associated with a preponderance of 5' mRNA fragments: implications for noninvasive prenatal diagnosis and monitoring.
    Wong BC; Chiu RW; Tsui NB; Chan KC; Chan LW; Lau TK; Leung TN; Lo YM
    Clin Chem; 2005 Oct; 51(10):1786-95. PubMed ID: 16081506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time reverse transcriptase polymerase chain reaction: an improvement in detecting mRNA levels in mouse cranial tissue.
    Singh R; Recinos RF; Agresti M; Schaefer RB; Bosbous M; Gosain AK
    Plast Reconstr Surg; 2006 Jun; 117(7):2227-34. PubMed ID: 16772922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA Amplification Protocol Leads to Biased Polymerase Chain Reaction Results Especially for Low-Copy Transcripts of Human Bone Marrow-Derived Stromal Cells.
    Coenen C; Liedtke S; Kogler G
    PLoS One; 2015; 10(10):e0141070. PubMed ID: 26485654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes.
    Bas A; Forsberg G; Hammarström S; Hammarström ML
    Scand J Immunol; 2004 Jun; 59(6):566-73. PubMed ID: 15182252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.