BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14726696)

  • 1. An Arf(GFP/GFP) reporter mouse reveals that the Arf tumor suppressor monitors latent oncogenic signals in vivo.
    Sherr CJ
    Cell Cycle; 2004 Mar; 3(3):239-40. PubMed ID: 14726696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo.
    Zindy F; Williams RT; Baudino TA; Rehg JE; Skapek SX; Cleveland JL; Roussel MF; Sherr CJ
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15930-5. PubMed ID: 14665695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Certainly no ARFterthought: oncogenic cooperation in ARF induction a key step in tumor suppression.
    Haupt Y
    Cell Cycle; 2003; 2(2):113-5. PubMed ID: 12695659
    [No Abstract]   [Full Text] [Related]  

  • 4. The Arf tumor suppressor regulates platelet-derived growth factor receptor beta signaling: a new view through the eyes of Arf(-/-) mice.
    Thornton JD; Silva RL; Martin AC; Skapek SX
    Cell Cycle; 2005 Oct; 4(10):1316-9. PubMed ID: 16205116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arf-dependent regulation of Pdgf signaling in perivascular cells in the developing mouse eye.
    Silva RL; Thornton JD; Martin AC; Rehg JE; Bertwistle D; Zindy F; Skapek SX
    EMBO J; 2005 Aug; 24(15):2803-14. PubMed ID: 16037818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Arf tumor suppressor in Emicro-Myc transgenic mice: longitudinal study of Myc-induced lymphomagenesis.
    Bertwistle D; Sherr CJ
    Blood; 2007 Jan; 109(2):792-4. PubMed ID: 16968893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal polyubiquitination and degradation of the Arf tumor suppressor.
    Kuo ML; den Besten W; Bertwistle D; Roussel MF; Sherr CJ
    Genes Dev; 2004 Aug; 18(15):1862-74. PubMed ID: 15289458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene.
    Martin AC; Thornton JD; Liu J; Wang X; Zuo J; Jablonski MM; Chaum E; Zindy F; Skapek SX
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3387-96. PubMed ID: 15452040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development.
    McKeller RN; Fowler JL; Cunningham JJ; Warner N; Smeyne RJ; Zindy F; Skapek SX
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3848-53. PubMed ID: 11891301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene.
    Ameyar-Zazoua M; Wisniewska MB; Bakiri L; Wagner EF; Yaniv M; Weitzman JB
    Oncogene; 2005 Mar; 24(14):2298-306. PubMed ID: 15688012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of INK4a/Arf locus-encoded senescent checkpoints activated in normal and psoriatic keratinocytes.
    Chaturvedi V; Cesnjaj M; Bacon P; Panella J; Choubey D; Diaz MO; Nickoloff BJ
    Am J Pathol; 2003 Jan; 162(1):161-70. PubMed ID: 12507899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements.
    D'Amico M; Wu K; Fu M; Rao M; Albanese C; Russell RG; Lian H; Bregman D; White MA; Pestell RG
    Cancer Res; 2004 Jun; 64(12):4122-30. PubMed ID: 15205322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new mechanism of inactivation of the INK4/ARF locus.
    Gonzalez S; Serrano M
    Cell Cycle; 2006 Jul; 5(13):1382-4. PubMed ID: 16855387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inv(16) cooperates with ARF haploinsufficiency to induce acute myeloid leukemia.
    Moreno-Miralles I; Pan L; Keates-Baleeiro J; Durst-Goodwin K; Yang C; Kim HG; Thompson MA; Klug CA; Cleveland JL; Hiebert SW
    J Biol Chem; 2005 Dec; 280(48):40097-103. PubMed ID: 16199529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel ARF binding proteins by two-hybrid screening.
    Tompkins V; Hagen J; Zediak VP; Quelle DE
    Cell Cycle; 2006 Mar; 5(6):641-6. PubMed ID: 16582619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus.
    Gonzalez S; Klatt P; Delgado S; Conde E; Lopez-Rios F; Sanchez-Cespedes M; Mendez J; Antequera F; Serrano M
    Nature; 2006 Mar; 440(7084):702-6. PubMed ID: 16572177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53-Dependent and -independent functions of the Arf tumor suppressor.
    Sherr CJ; Bertwistle D; DEN Besten W; Kuo ML; Sugimoto M; Tago K; Williams RT; Zindy F; Roussel MF
    Cold Spring Harb Symp Quant Biol; 2005; 70():129-37. PubMed ID: 16869746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination of, and sumoylation by, the Arf tumor suppressor.
    den Besten W; Kuo ML; Tago K; Williams RT; Sherr CJ
    Isr Med Assoc J; 2006 Apr; 8(4):249-51. PubMed ID: 16671360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ARF tumor suppressor: keeping Myc on a leash.
    Gregory MA; Qi Y; Hann SR
    Cell Cycle; 2005 Feb; 4(2):249-52. PubMed ID: 15655352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E2F1 suppresses skin carcinogenesis via the ARF-p53 pathway.
    Russell JL; Weaks RL; Berton TR; Johnson DG
    Oncogene; 2006 Feb; 25(6):867-76. PubMed ID: 16205640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.