These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 14726955)
1. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. Giannattasio M; Lazzaro F; Longhese MP; Plevani P; Muzi-Falconi M EMBO J; 2004 Jan; 23(2):429-38. PubMed ID: 14726955 [TBL] [Abstract][Full Text] [Related]
2. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. Giannattasio M; Lazzaro F; Siede W; Nunes E; Plevani P; Muzi-Falconi M DNA Repair (Amst); 2004 Dec; 3(12):1591-9. PubMed ID: 15474420 [TBL] [Abstract][Full Text] [Related]
3. Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Pagès V; Santa Maria SR; Prakash L; Prakash S Genes Dev; 2009 Jun; 23(12):1438-49. PubMed ID: 19528320 [TBL] [Abstract][Full Text] [Related]
4. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. Bomgarden RD; Lupardus PJ; Soni DV; Yee MC; Ford JM; Cimprich KA EMBO J; 2006 Jun; 25(11):2605-14. PubMed ID: 16675950 [TBL] [Abstract][Full Text] [Related]
5. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Taschner M; Harreman M; Teng Y; Gill H; Anindya R; Maslen SL; Skehel JM; Waters R; Svejstrup JQ Mol Cell Biol; 2010 Jan; 30(2):436-46. PubMed ID: 19901073 [TBL] [Abstract][Full Text] [Related]
6. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. Neecke H; Lucchini G; Longhese MP EMBO J; 1999 Aug; 18(16):4485-97. PubMed ID: 10449414 [TBL] [Abstract][Full Text] [Related]
7. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Baroni E; Viscardi V; Cartagena-Lirola H; Lucchini G; Longhese MP Mol Cell Biol; 2004 May; 24(10):4151-65. PubMed ID: 15121837 [TBL] [Abstract][Full Text] [Related]
8. Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. Biswas H; Goto G; Wang W; Sung P; Sugimoto K PLoS Genet; 2019 Aug; 15(8):e1008294. PubMed ID: 31369547 [TBL] [Abstract][Full Text] [Related]
9. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Paciotti V; Clerici M; Scotti M; Lucchini G; Longhese MP Mol Cell Biol; 2001 Jun; 21(12):3913-25. PubMed ID: 11359899 [TBL] [Abstract][Full Text] [Related]
10. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Vialard JE; Gilbert CS; Green CM; Lowndes NF EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168 [TBL] [Abstract][Full Text] [Related]
11. The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast. Dubrana K; van Attikum H; Hediger F; Gasser SM J Cell Sci; 2007 Dec; 120(Pt 23):4209-20. PubMed ID: 18003698 [TBL] [Abstract][Full Text] [Related]
12. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. Rouse J; Jackson SP EMBO J; 2000 Nov; 19(21):5801-12. PubMed ID: 11060031 [TBL] [Abstract][Full Text] [Related]
13. Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. Clerici M; Paciotti V; Baldo V; Romano M; Lucchini G; Longhese MP EMBO J; 2001 Nov; 20(22):6485-98. PubMed ID: 11707419 [TBL] [Abstract][Full Text] [Related]
14. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway. Nakada D; Hirano Y; Sugimoto K Mol Cell Biol; 2004 Nov; 24(22):10016-25. PubMed ID: 15509802 [TBL] [Abstract][Full Text] [Related]
15. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Giannattasio M; Follonier C; Tourrière H; Puddu F; Lazzaro F; Pasero P; Lopes M; Plevani P; Muzi-Falconi M Mol Cell; 2010 Oct; 40(1):50-62. PubMed ID: 20932474 [TBL] [Abstract][Full Text] [Related]
16. Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Berens TJ; Toczyski DP Mol Biol Cell; 2012 Mar; 23(6):1058-67. PubMed ID: 22298423 [TBL] [Abstract][Full Text] [Related]
17. Dpb11 activates the Mec1-Ddc2 complex. Mordes DA; Nam EA; Cortez D Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18730-4. PubMed ID: 19028869 [TBL] [Abstract][Full Text] [Related]
18. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Enomoto S; Glowczewski L; Berman J Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334 [TBL] [Abstract][Full Text] [Related]
19. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. Navadgi-Patil VM; Kumar S; Burgers PM J Biol Chem; 2011 Nov; 286(47):40999-1007. PubMed ID: 21956112 [TBL] [Abstract][Full Text] [Related]
20. Mec1 Memisoglu G; Lanz MC; Eapen VV; Jordan JM; Lee K; Smolka MB; Haber JE Cell Rep; 2019 Jul; 28(4):1090-1102.e3. PubMed ID: 31340146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]