These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 147271)

  • 1. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase.
    Suetsugu N; Takeo K; Sanai Y; Kuge T
    J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of phenyl beta-maltoside catalyzed by saccharifying alpha-amylase from Bacillus subtilis.
    Ishikura K; Nitta Y; Watanabe T
    J Biochem; 1977 May; 81(5):1187-92. PubMed ID: 408329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the substrate specificity of alpha- and beta-amylase of Entamoeba histolytica.
    Werries E; Müller F
    Mol Biochem Parasitol; 1986 Feb; 18(2):211-21. PubMed ID: 2421162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic study of soybean beta-amylase. The effect of pH.
    Nitta Y; Kinikata T; Watanabe T
    J Biochem; 1979 Jan; 85(1):41-5. PubMed ID: 33163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile.
    Seigner C; Prodanov E; Marchis-Mouren G
    Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference spectroscopic study of the interaction between soybean beta-amylase and substrate or substrate analogues.
    Nitta Y; Kunikata T; Watanabe T
    J Biochem; 1983 Apr; 93(4):1195-201. PubMed ID: 6190798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actions of porcine pancreatic and Bacillus subtilis alpha-amylases and Aspergillus niger glucoamylase on phosphorylated (1--4)-alpha-D-glucan.
    Takeda Y; Hizukuri S; Ozono Y; Suetake M
    Biochim Biophys Acta; 1983 Dec; 749(3):302-11. PubMed ID: 6419777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of soybean beta-amylase with glucose.
    Nomura K; Mikami B; Morita Y
    J Biochem; 1986 Nov; 100(5):1175-83. PubMed ID: 2434466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of anomeric forms of sugar produced by amylases. V. Anomeric forms of maltose produced in the hydrolytic reaction of substituted phenyl alpha-maltosides catalyzed by saccharifying alpha-amylase from B. subtilis.
    Shibaoka T; Ishikura K; Hiromi K; Watanabe T
    J Biochem; 1975 Jun; 77(6):1215-22. PubMed ID: 5401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A.
    Omichi K; Matsushima Y
    J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of sweet potato beta-amylase with its reaction product, maltose.
    Uehara K; Mannen S
    J Biochem; 1979 Jan; 85(1):105-13. PubMed ID: 153906
    [No Abstract]   [Full Text] [Related]  

  • 12. The occurrence of beta-amylase in Entamoeba histolytica.
    Werries E; Nebinger P
    Mol Biochem Parasitol; 1984 Apr; 11():329-36. PubMed ID: 6205266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride.
    Hehre EJ; Brewer CF; Genghof DS
    J Biol Chem; 1979 Jul; 254(13):5942-50. PubMed ID: 156183
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.
    Kitahata S; Chiba S; Brewer CF; Hehre EJ
    Biochemistry; 1991 Jul; 30(27):6769-75. PubMed ID: 1829637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic flexibility of glycosylases. The hydration of maltal by beta-amylase to form 2-deoxymaltose.
    Hehre EJ; Kitahata S; Brewer CF
    J Biol Chem; 1986 Feb; 261(5):2147-53. PubMed ID: 2418022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris.
    He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D
    BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous production of maltooligosaccharides from glucose 1-phosphate by amylase-phosphorylase reactor.
    Nakatani H; Tanaka A; Hiromi K
    J Appl Biochem; 1983 Dec; 5(6):371-4. PubMed ID: 6206049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site.
    Rockey WM; Laederach A; Reilly PJ
    Proteins; 2000 Aug; 40(2):299-309. PubMed ID: 10842343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch utilization by Bacteroides ovatus isolated from the human large intestine.
    Degnan BA; Macfarlane S; Quigley ME; Macfarlane GT
    Curr Microbiol; 1997 May; 34(5):290-6. PubMed ID: 9099629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.