These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14727659)

  • 1. Preliminary validation of computational procedures for a new atmospheric ionizing radiation (AIR) model.
    Clem JM; De Angelis G; Goldhagen P; Wilson JW
    Adv Space Res; 2003; 32(1):27-33. PubMed ID: 14727659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New calculations of the atmospheric cosmic radiation field--results for neutron spectra.
    Clem JM; De Angelis G; Goldhagen P; Wilson JW
    Radiat Prot Dosimetry; 2004; 110(1-4):423-8. PubMed ID: 15353685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies.
    De Angelis G; Clem JM; Goldhagen PE; Wilson JW
    Adv Space Res; 2003; 32(1):17-26. PubMed ID: 14727658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The atmospheric radiation response to solar-particle-events.
    O'Brien K; Sauer HH
    Adv Space Res; 2003; 32(1):73-80. PubMed ID: 14727666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics of cosmic radiation fields.
    Heinrich W; Roesler S; Schraube H
    Radiat Prot Dosimetry; 1999; 86(4):253-8. PubMed ID: 11543393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron spectra in the atmosphere from interactions of primary cosmic rays.
    Roesler S; Heinrich W; Schraube H
    Adv Space Res; 1998; 21(12):1717-26. PubMed ID: 11542891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 108(2):91-105. PubMed ID: 14978289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's magnetosphere.
    Getselev IV; Ignatiev PP; Kabashova NA; Kontor NN; Moszhukhina AR; Timofeev GA; Khotilovskaya TG
    Adv Space Res; 1992; 12(2-3):441-4. PubMed ID: 11537042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary radiation environments in heavy space vehicles and instruments.
    Dyer CS; Truscott PR; Evans H; Sims AJ; Hammond N; Comber C
    Adv Space Res; 1996; 17(2):53-8. PubMed ID: 11540371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.
    Mishev AL
    J Environ Radioact; 2016 Mar; 153():15-22. PubMed ID: 26714058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic particle environment in near-Earth orbit.
    Klecker B
    Adv Space Res; 1996; 17(2):37-45. PubMed ID: 11540369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The space-developed dynamic vertical cutoff rigidity model and its applicability to aircraft radiation dose.
    Smart DF; Shea MA
    Adv Space Res; 2003; 32(1):103-8. PubMed ID: 14727669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica.
    Abe K; Fuke H; Haino S; Hams T; Hasegawa M; Horikoshi A; Itazaki A; Kim KC; Kumazawa T; Kusumoto A; Lee MH; Makida Y; Matsuda S; Matsukawa Y; Matsumoto K; Mitchell JW; Myers Z; Nishimura J; Nozaki M; Orito R; Ormes JF; Picot-Clemente N; Sakai K; Sasaki M; Seo ES; Shikaze Y; Shinoda R; Streitmatter RE; Suzuki J; Takasugi Y; Takeuchi K; Tanaka K; Thakur N; Yamagami T; Yamamoto A; Yoshida T; Yoshimura K
    Astrophys J; 2016 May; 822(2):. PubMed ID: 32713958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the galactic cosmic ray and geomagnetic transmission models.
    Badhwar GD; Truong AG; O'Neill PM; Choutko V
    Radiat Meas; 2001 Jun; 33(3):361-7. PubMed ID: 11855419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and requirements of nuclear reaction databases for GCR transport in the atmosphere and structures.
    Cucinotta FA; Wilson JW; Shinn JL; Tripathi RK
    Adv Space Res; 1998; 21(12):1753-62. PubMed ID: 11542895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
    MatthiƤ D; Sihver L; Meier M
    Radiat Prot Dosimetry; 2008; 131(2):222-8. PubMed ID: 18448435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.
    Hubert G; Regis D; Cheminet A; Gatti M; Lacoste V
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):290-4. PubMed ID: 24500239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Space Shuttle neutron measurements with FLUKA.
    Pinsky L; Carminati F; Ferrari A
    Radiat Meas; 2001 Jun; 33(3):335-9. PubMed ID: 11855415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of radiation fields in the atmosphere and comparison to experimental data.
    Roesler S; Heinrich W; Schraube H
    Radiat Res; 1998 Jan; 149(1):87-97. PubMed ID: 9421158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.