BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14727731)

  • 1. Reference sample method reduces the error caused by variable cryosection thickness in Fourier transform infrared imaging.
    Rieppo J; Hyttinen MM; Jurvelin JS; Helminen HJ
    Appl Spectrosc; 2004 Jan; 58(1):137-40. PubMed ID: 14727731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of spatial proteoglycan content in articular cartilage with Fourier transform infrared imaging spectroscopy: Critical evaluation of analysis methods and specificity of the parameters.
    Rieppo L; Saarakkala S; Närhi T; Holopainen J; Lammi M; Helminen HJ; Jurvelin JS; Rieppo J
    Microsc Res Tech; 2010 May; 73(5):503-12. PubMed ID: 19839035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved methods for performing multivariate analysis and deriving background spectra in atmospheric open-path FT-IR monitoring.
    Hong D; Cho S
    Appl Spectrosc; 2003 Mar; 57(3):299-308. PubMed ID: 14658622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting the quality of glycerol monolaurate: a method for using Fourier transform infrared spectroscopy with wavelet transform and modified uninformative variable elimination.
    Chen X; Wu D; He Y; Liu S
    Anal Chim Acta; 2009 Apr; 638(1):16-22. PubMed ID: 19298874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the normalization method in two-dimensional correlation spectra when concentration is used as a perturbation parameter.
    Yu ZW; Noda I
    Appl Spectrosc; 2003 Feb; 57(2):164-7. PubMed ID: 14610953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron.
    Chan KL; Kazarian SG; Mavraki A; Williams DR
    Appl Spectrosc; 2005 Feb; 59(2):149-55. PubMed ID: 15720754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
    Fernandez K; Agosin E
    J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to deal with some spurious fringes in Fourier transform infrared spectrometers.
    Max JJ; Chapados C
    Appl Spectrosc; 2008 Oct; 62(10):1167-71. PubMed ID: 18926028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics.
    Nicolaou N; Goodacre R
    Analyst; 2008 Oct; 133(10):1424-31. PubMed ID: 18810291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of denaturation processes in aged beef loin by Fourier transform infrared microspectroscopy.
    Kirschner C; Ofstad R; Skarpeid HJ; Høst V; Kohler A
    J Agric Food Chem; 2004 Jun; 52(12):3920-9. PubMed ID: 15186118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting attenuated total reflection-Fourier transform infrared spectra for water vapor and carbon dioxide.
    Bruun SW; Kohler A; Adt I; Sockalingum GD; Manfait M; Martens H
    Appl Spectrosc; 2006 Sep; 60(9):1029-39. PubMed ID: 17002829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of soybean seed samples for FT-IR microspectroscopy.
    Miller SS; Pietrzak LN; Wetzel DL
    Biotech Histochem; 2005; 80(3-4):117-21. PubMed ID: 16298896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Japanese green tea ranking by fourier transform near-infrared reflectance spectroscopy.
    Ikeda T; Kanaya S; Yonetani T; Kobayashi A; Fukusaki E
    J Agric Food Chem; 2007 Nov; 55(24):9908-12. PubMed ID: 17973445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the influence of post-excite radius and axial confinement on quantitative proteomic measurements using Fourier transform ion cyclotron resonance mass spectrometry.
    Frahm JL; Velez CM; Muddiman DC
    Rapid Commun Mass Spectrom; 2007; 21(7):1196-204. PubMed ID: 17330212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new, non-destructive method for analysis of clinical samples with FT-IR microspectroscopy. Breast cancer tissue as an example.
    Dukor RK; Liebman MN; Johnson BL
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):211-7. PubMed ID: 9551652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental aspects of asynchronous rapid-scan fourier transform infrared imaging.
    Snively CM; Lauterbach J
    Appl Spectrosc; 2005 Sep; 59(9):1075-81. PubMed ID: 16197629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.
    Rieppo L; Saarakkala S; Närhi T; Helminen HJ; Jurvelin JS; Rieppo J
    Osteoarthritis Cartilage; 2012 May; 20(5):451-459. PubMed ID: 22321720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.