BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 14727756)

  • 1. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies.
    Consiglieri L; dos Santos I; Haemmerich D
    Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation.
    dos Santos I; Haemmerich D; Pinheiro Cda S; da Rocha AF
    Biomed Eng Online; 2008 Jul; 7():21. PubMed ID: 18620566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones.
    Peng T; O'Neill D; Payne S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6866-9. PubMed ID: 22255916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of thermal ablation in tissue surrounding a large vessel.
    Chen X; Saidel GM
    J Biomech Eng; 2009 Jan; 131(1):011001. PubMed ID: 19045917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels.
    Craciunescu OI; Clegg ST
    J Biomech Eng; 2001 Oct; 123(5):500-5. PubMed ID: 11601736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model.
    Brinck H; Werner J
    J Biomech Eng; 1994 Aug; 116(3):324-30. PubMed ID: 7799635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the directional blood flow on thermal dose distribution during thermal therapy: an application of a Green's function based on the porous model.
    Kou HS; Shih TC; Lin WL
    Phys Med Biol; 2003 Jun; 48(11):1577-89. PubMed ID: 12817939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?
    González-Suárez A; Trujillo M; Burdío F; Andaluz A; Berjano E
    Med Phys; 2014 Aug; 41(8):083301. PubMed ID: 25086561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors.
    Huang HW
    Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a practical model for light and heat distribution using laser-induced thermotherapy near to a large vessel.
    Verhey JF; Mohammed Y; Ludwig A; Giese K
    Phys Med Biol; 2003 Nov; 48(21):3595-610. PubMed ID: 14653565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network.
    Shrivastava D; Roemer RB
    J Biomech Eng; 2006 Apr; 128(2):210-6. PubMed ID: 16524332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects.
    Singh S; Melnik R
    Phys Med Biol; 2019 Dec; 64(24):245008. PubMed ID: 31600740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large blood vessel cooling in heated tissues: a numerical study.
    Kolios MC; Sherar MD; Hunt JW
    Phys Med Biol; 1995 Apr; 40(4):477-94. PubMed ID: 7610110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generic bioheat transfer thermal model for a perfused tissue.
    Shrivastava D; Vaughan JT
    J Biomech Eng; 2009 Jul; 131(7):074506. PubMed ID: 19640142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The theoretical and experimental evaluation of the heat balance in perfused tissue.
    Crezee J; Mooibroek J; Lagendijk JJ; van Leeuwen GM
    Phys Med Biol; 1994 May; 39(5):813-32. PubMed ID: 15552087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.