These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 14727851)

  • 1. Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study.
    Ricci M; Sassi P; Nastruzzi C; Rossi C
    AAPS PharmSciTech; 2000 Mar; 1(1):E2. PubMed ID: 14727851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucinostatin-A loaded nanospheres: characterization and in vivo toxicity and efficacy evaluation.
    Ricci M; Blasi P; Giovagnoli S; Perioli L; Vescovi C; Rossi C
    Int J Pharm; 2004 May; 275(1-2):61-72. PubMed ID: 15081138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucinostatins, peptide mycotoxins produced by Paecilomyces lilacinus and their possible roles in fungal infection.
    Mikami Y; Fukushima K; Arai T; Abe F; Shibuya H; Ommura Y
    Zentralbl Bakteriol Mikrobiol Hyg A; 1984 Jul; 257(2):275-83. PubMed ID: 6485630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.
    Strobel GA; Hess WM
    Chem Biol; 1997 Jul; 4(7):529-36. PubMed ID: 9263641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of the peptide antibiotic leucinostatin.
    Ishiguro K; Arai T
    Antimicrob Agents Chemother; 1976 Jun; 9(6):893-8. PubMed ID: 945714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide.
    Cabiaux V; Agerberth B; Johansson J; Homblé F; Goormaghtigh E; Ruysschaert JM
    Eur J Biochem; 1994 Sep; 224(3):1019-27. PubMed ID: 7925399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuated total reflectance infrared studies of liposome adsorption at the solid-liquid interface.
    Er Y; Prestidge CA; Fornasiero D
    Colloids Surf B Biointerfaces; 2004 Aug; 36(3-4):147-53. PubMed ID: 15276630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilamellar vesicles as potential capreomycin sulfate carriers: preparation and physicochemical characterization.
    Giovagnoli S; Blasi P; Vescovi C; Fardella G; Chiappini I; Perioli L; Ricci M; Rossi C
    AAPS PharmSciTech; 2004 Dec; 4(4):E69. PubMed ID: 15198564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An infrared spectroscopic based method to measure membrane permeance in liposomes.
    Chen C; Tripp CP
    Biochim Biophys Acta; 2008 Oct; 1778(10):2266-72. PubMed ID: 18571495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical & pharmaceutical testing of liposomal amphotericin B.
    Gokhale PC; Kotwani RN; Dange SY; Kshirsagar NA; Pandya SK
    Indian J Med Res; 1993 Apr; 98():75-8. PubMed ID: 8344735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro kinetics of drug release and pulmonary retention of microencapsulated antibiotic in liposomal formulations in relation to the lipid composition.
    Beaulac C; Clement-Major S; Hawari J; Lagace J
    J Microencapsul; 1997; 14(3):335-48. PubMed ID: 9147283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles.
    Alinaghi A; Rouini MR; Johari Daha F; Moghimi HR
    Int J Pharm; 2014 Jan; 459(1-2):30-9. PubMed ID: 24239579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery.
    Dubey V; Mishra D; Jain NK
    Eur J Pharm Biopharm; 2007 Sep; 67(2):398-405. PubMed ID: 17452098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model.
    Khan MA; Owais M
    J Antimicrob Chemother; 2006 Jul; 58(1):125-32. PubMed ID: 16709592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity.
    Russell AL; Kennedy AM; Spuches AM; Venugopal D; Bhonsle JB; Hicks RP
    Chem Phys Lipids; 2010 Jun; 163(6):488-97. PubMed ID: 20362562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorbance-based assay for membrane disruption by antimicrobial peptides and synthetic copolymers using pyrroloquinoline quinone-loaded liposomes.
    Zimmerman LB; Worley BV; Palermo EF; Brender JR; Lee KD; Kuroda K; Ramamoorthy A; Meyerhoff ME
    Anal Biochem; 2011 Apr; 411(2):194-9. PubMed ID: 21237129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of low power microwave on the properties of DPPC vesicles.
    Mady MM; Allam MA
    Phys Med; 2012 Jan; 28(1):48-53. PubMed ID: 21459642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucinostatin D, a novel peptide antibiotic from Paecilomyces marquandii.
    Rossi C; Tuttobello L; Ricci M; Casinovi CG; Radics L
    J Antibiot (Tokyo); 1987 Jan; 40(1):130-3. PubMed ID: 3558114
    [No Abstract]   [Full Text] [Related]  

  • 19. Correlation of Physicochemical and Antimicrobial Properties of Liposomes Loaded with (+)-Usnic Acid.
    Battista S; Bellio P; Celenza G; Galantini L; Franceschini I; Mancini G; Giansanti L
    Chempluschem; 2020 May; 85(5):1014-1021. PubMed ID: 32421257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics.
    Deniz A; Sade A; Severcan F; Keskin D; Tezcaner A; Banerjee S
    Biosci Rep; 2010 Jun; 30(5):365-73. PubMed ID: 19900165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.