These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 14727854)
1. Dynamic changes in size distribution of emulsion droplets during ethyl acetate-based microencapsulation process. Bahl Y; Sah H AAPS PharmSciTech; 2000 Mar; 1(1):E5. PubMed ID: 14727854 [TBL] [Abstract][Full Text] [Related]
2. Formulation and process parameters affecting protein encapsulation into PLGA microspheres during ethyl acetate-based microencapsulation process. Cho M; Sah H J Microencapsul; 2005 Feb; 22(1):1-12. PubMed ID: 16019886 [TBL] [Abstract][Full Text] [Related]
3. Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres. Hsu YY; Hao T; Hedley ML J Drug Target; 1999 Dec; 7(4):313-23. PubMed ID: 10682910 [TBL] [Abstract][Full Text] [Related]
4. Investigation on structural integrity of PLGA during ammonolysis-based microencapsulation process. Heo S; Lee M; Lee S; Sah H Int J Pharm; 2011 Oct; 419(1-2):60-70. PubMed ID: 21839820 [TBL] [Abstract][Full Text] [Related]
5. Ammonolysis-based microencapsulation technique using isopropyl formate as dispersed solvent. Im HY; Sah H Int J Pharm; 2009 Dec; 382(1-2):130-8. PubMed ID: 19715744 [TBL] [Abstract][Full Text] [Related]
6. Ammonolysis-induced solvent removal: a facile approach for solidifying emulsion droplets into PLGA microspheres. Kim J; Hong D; Chung Y; Sah H Biomacromolecules; 2007 Dec; 8(12):3900-7. PubMed ID: 18031011 [TBL] [Abstract][Full Text] [Related]
7. Solvent hydrolysis rate determines critical quality attributes of PLGA microspheres prepared using non-volatile green solvent. Kim H; Kim S; Sah H J Biomater Sci Polym Ed; 2018 Jan; 29(1):35-56. PubMed ID: 29086633 [TBL] [Abstract][Full Text] [Related]
8. Nanostructured microspheres produced by supercritical fluid extraction of emulsions. Della Porta G; Reverchon E Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122 [TBL] [Abstract][Full Text] [Related]
9. Applicability of non-halogenated methyl propionate to microencapsulation. Kang J; Sah E; Sah H J Microencapsul; 2014; 31(4):323-32. PubMed ID: 24175715 [TBL] [Abstract][Full Text] [Related]
10. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method. Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864 [TBL] [Abstract][Full Text] [Related]
11. Liquid-liquid emulsification by static mixers for use in microencapsulation. Maa YF; Hsu C J Microencapsul; 1996; 13(4):419-33. PubMed ID: 8808779 [TBL] [Abstract][Full Text] [Related]
12. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Doan TV; Couet W; Olivier JC Int J Pharm; 2011 Jul; 414(1-2):112-7. PubMed ID: 21596123 [TBL] [Abstract][Full Text] [Related]
13. A novel preparation method for PLGA microspheres using non-halogenated solvents. Matsumoto A; Kitazawa T; Murata J; Horikiri Y; Yamahara H J Control Release; 2008 Aug; 129(3):223-7. PubMed ID: 18562036 [TBL] [Abstract][Full Text] [Related]
14. Emulsion-based synthesis of PLGA-microspheres for the in vitro expansion of porcine chondrocytes. Gabler F; Frauenschuh S; Ringe J; Brochhausen C; Götz P; Kirkpatrick CJ; Sittinger M; Schubert H; Zehbe R Biomol Eng; 2007 Nov; 24(5):515-20. PubMed ID: 17869174 [TBL] [Abstract][Full Text] [Related]
15. Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. Ruan G; Feng SS; Li QT J Control Release; 2002 Dec; 84(3):151-60. PubMed ID: 12468218 [TBL] [Abstract][Full Text] [Related]
16. Single droplet drying step characterization in microsphere preparation. Al Zaitone B; Lamprecht A Colloids Surf B Biointerfaces; 2013 May; 105():328-34. PubMed ID: 23395666 [TBL] [Abstract][Full Text] [Related]
17. Utilization of catalytic hydrolysis of ethyl acetate for solvent removal during microencapsulation. Lee M; Kang J; Sah H J Microencapsul; 2013; 30(4):346-55. PubMed ID: 23078109 [TBL] [Abstract][Full Text] [Related]
18. Application of acid-catalyzed hydrolysis of dispersed organic solvent in developing new microencapsulation process technology. Lee H; Lee S; Bhattacharjee H; Sah H J Microencapsul; 2012; 29(4):380-7. PubMed ID: 22299629 [TBL] [Abstract][Full Text] [Related]
19. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Herrmann J; Bodmeier R Eur J Pharm Biopharm; 1998 Jan; 45(1):75-82. PubMed ID: 9689538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]