BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 14728599)

  • 1. Vesicle budding from endoplasmic reticulum is involved in calsequestrin routing to sarcoplasmic reticulum of skeletal muscles.
    Nori A; Bortoloso E; Frasson F; Valle G; Volpe P
    Biochem J; 2004 Apr; 379(Pt 2):505-12. PubMed ID: 14728599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric calsequestrin and its targeting to the junctional sarcoplasmic reticulum of skeletal muscle.
    Nori A; Nadalini KA; Martini A; Rizzuto R; Villa A; Volpe P
    Am J Physiol; 1997 May; 272(5 Pt 1):C1420-8. PubMed ID: 9176130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis and deletion of three phosphorylation sites of calsequestrin of skeletal muscle sarcoplasmic reticulum. Effects on intracellular targeting.
    Nori A; Furlan S; Patiri F; Cantini M; Volpe P
    Exp Cell Res; 2000 Oct; 260(1):40-9. PubMed ID: 11010809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of calsequestrin to the sarcoplasmic reticulum of skeletal muscle upon deletion of its glycosylation site.
    Nori A; Valle G; Massimino ML; Volpe P
    Exp Cell Res; 2001 Apr; 265(1):104-13. PubMed ID: 11281648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calsequestrin targeting to sarcoplasmic reticulum of skeletal muscle fibers.
    Nori A; Valle G; Bortoloso E; Turcato F; Volpe P
    Am J Physiol Cell Physiol; 2006 Aug; 291(2):C245-53. PubMed ID: 16571864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of calsequestrin to sarcoplasmic reticulum after deletions of its acidic carboxy terminus.
    Nori A; Gola E; Tosato S; Cantini M; Volpe P
    Am J Physiol; 1999 Nov; 277(5):C974-81. PubMed ID: 10564090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of the endoplasmic reticulum and its relationship with the sarcoplasmic reticulum in skeletal myofibers.
    Kaisto T; Metsikkö K
    Exp Cell Res; 2003 Sep; 289(1):47-57. PubMed ID: 12941603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of ARF1 and rab GTPases in polarization of the Golgi stack.
    Bannykh SI; Plutner H; Matteson J; Balch WE
    Traffic; 2005 Sep; 6(9):803-19. PubMed ID: 16101683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport.
    Aridor M; Bannykh SI; Rowe T; Balch WE
    J Cell Biol; 1995 Nov; 131(4):875-93. PubMed ID: 7490291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of alpha-kinase-anchoring protein (alpha KAP) to sarcoplasmic reticulum and nuclei of skeletal muscle.
    Nori A; Lin PJ; Cassetti A; Villa A; Bayer KU; Volpe P
    Biochem J; 2003 Mar; 370(Pt 3):873-80. PubMed ID: 12470297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of calsequestrin in L6 myoblasts: formation of endoplasmic reticulum subdomains and their evolution into discrete vacuoles where aggregates of the protein are specifically accumulated.
    Gatti G; Podini P; Meldolesi J
    Mol Biol Cell; 1997 Sep; 8(9):1789-803. PubMed ID: 9307974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different endoplasmic reticulum trafficking and processing pathways for calsequestrin (CSQ) and epitope-tagged CSQ.
    Houle TD; Ram ML; McMurray WJ; Cala SE
    Exp Cell Res; 2006 Dec; 312(20):4150-61. PubMed ID: 17045261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus.
    Yoshimura SI; Nakamura N; Barr FA; Misumi Y; Ikehara Y; Ohno H; Sakaguchi M; Mihara K
    J Cell Sci; 2001 Nov; 114(Pt 22):4105-15. PubMed ID: 11739642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newly synthesized calsequestrin, destined for the sarcoplasmic reticulum, is contained in early/intermediate Golgi-derived clathrin-coated vesicles.
    Thomas K; Navarro J; Benson RJ; Campbell KP; Rotundo RL; Fine RE
    J Biol Chem; 1989 Feb; 264(6):3140-5. PubMed ID: 2563378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers.
    Villa A; Podini P; Nori A; Panzeri MC; Martini A; Meldolesi J; Volpe P
    Exp Cell Res; 1993 Nov; 209(1):140-8. PubMed ID: 8223998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins.
    Gatti G; Trifari S; Mesaeli N; Parker JM; Michalak M; Meldolesi J
    J Cell Biol; 2001 Aug; 154(3):525-34. PubMed ID: 11489915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes.
    McFarland TP; Milstein ML; Cala SE
    J Mol Cell Cardiol; 2010 Oct; 49(4):556-64. PubMed ID: 20595002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport pathway, maturation, and targetting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers.
    Rahkila P; Alakangas A; Väänänen K; Metsikkö K
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1585-96. PubMed ID: 8799845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI.
    Rowe T; Aridor M; McCaffery JM; Plutner H; Nuoffer C; Balch WE
    J Cell Biol; 1996 Nov; 135(4):895-911. PubMed ID: 8922375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle.
    Siddiqi SA; Gorelick FS; Mahan JT; Mansbach CM
    J Cell Sci; 2003 Jan; 116(Pt 2):415-27. PubMed ID: 12482926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.