These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1472898)

  • 1. Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone.
    Morris DC; Masuhara K; Takaoka K; Ono K; Anderson HC
    Bone Miner; 1992 Dec; 19(3):287-98. PubMed ID: 1472898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteosarcoma hybrids can preferentially target alkaline phosphatase activity to matrix vesicles: evidence for independent membrane biogenesis.
    Leach RJ; Schwartz Z; Johnson-Pais TL; Dean DD; Luna M; Boyan BD
    J Bone Miner Res; 1995 Nov; 10(11):1614-24. PubMed ID: 8592937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular alkaline phosphatase activity in mineralizing matrices of cartilage and bone: ultrastructural localization using a cerium-based method.
    Bonucci E; Silvestrini G; Bianco P
    Histochemistry; 1992 May; 97(4):323-7. PubMed ID: 1618646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical study of alkaline phosphatase in growth plate cartilage, bone, and fetal calf isolated chondrocytes using monoclonal antibodies.
    Väänänen K; Morris DC; Munoz PA; Parvinen EK
    Acta Histochem; 1987; 82(2):211-7. PubMed ID: 3128049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatase actions at the site of appositional mineralization in bisphosphonate-affected bones of the rat.
    Li Y; Nakayama H; Notani T; Ahmad M; Tabata MJ; Takano Y
    J Med Dent Sci; 2008 Sep; 55(3-4):255-65. PubMed ID: 19697513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of matrix vesicle enzyme activity in osteoblast-like cells by 1,25(OH)2D3 and transforming growth factor beta (TGF beta).
    Bonewald LF; Schwartz Z; Swain LD; Boyan BD
    Bone Miner; 1992 May; 17(2):139-44. PubMed ID: 1611299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme histochemical localisation of alkaline phosphatase activity in osteogenesis imperfecta bone and growth plate: a preliminary study.
    Sarathchandra P; Cassella JP; Ali SY
    Micron; 2005; 36(7-8):715-20. PubMed ID: 16182549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence and activity of alkaline phosphatase in two human osteosarcoma cell lines.
    Randall JC; Morris DC; Zeiger S; Masuhara K; Tsuda T; Anderson HC
    J Histochem Cytochem; 1989 Jul; 37(7):1069-74. PubMed ID: 2659662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral peptidase activities in matrix vesicles from bovine fetal alveolar bone and dog osteosarcoma.
    Hirschman A; Deutsch D; Hirschman M; Bab IA; Sela J; Muhlrad A
    Calcif Tissue Int; 1983 Sep; 35(6):791-7. PubMed ID: 6652555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone matrix vesicle-bound alkaline phosphatase for the assessment of peripheral blood admixture to human bone marrow aspirates.
    Nollet E; Van Craenenbroeck EM; Martinet W; Rodrigus I; De Bock D; Berneman Z; Pintelon I; Ysebaert D; Vrints CJ; Conraads VM; Van Hoof VO
    Clin Chim Acta; 2015 Jun; 446():253-60. PubMed ID: 25896960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of plasma membrane and matrix vesicle enzyme activity by transforming growth factor-beta in osteosarcoma cell cultures.
    Bonewald LF; Schwartz Z; Swain LD; Ramirez V; Poser J; Boyan BD
    J Cell Physiol; 1990 Nov; 145(2):200-6. PubMed ID: 2246323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and cross-reactive properties of monoclonal antibodies to bovine matrix vesicle alkaline phosphatase.
    Oppliger I; Vaananen HK; Munoz PA; Hsu HH; Morris DC; Anderson HC
    Bone; 1986; 7(5):373-8. PubMed ID: 3539156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human osteosarcoma cells spontaneously release matrix-vesicle-like structures with the capacity to mineralize.
    Fedde KN
    Bone Miner; 1992 May; 17(2):145-51. PubMed ID: 1611300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological evidence of the altered distribution of osteocytes and bone matrix synthesis in klotho-deficient mice.
    Suzuki H; Amizuka N; Oda K; Li M; Yoshie H; Ohshima H; Noda M; Maeda T
    Arch Histol Cytol; 2005 Dec; 68(5):371-81. PubMed ID: 16505583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Laddec on the formation of calcified bone matrix in rat calvariae cells culture.
    Hofman S; Sidqui M; Abensur D; Valentini P; Missika P
    Biomaterials; 1999 Jul; 20(13):1155-66. PubMed ID: 10395384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural changes in osteocytes in microgravity conditions.
    Rodionova NV; Oganov VS; Zolotova NV
    Adv Space Res; 2002; 30(4):765-70. PubMed ID: 12528727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light microscopic localization of alkaline phosphatase in fetal bovine bone using immunoperoxidase and immunogold-silver staining procedures.
    Morris DC; Randall JC; Anderson HC
    J Histochem Cytochem; 1988 Mar; 36(3):323-7. PubMed ID: 3278058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoreactive calbindin-D9K in bone matrix vesicle.
    Balmain N; Hotton D; Cuisinier-Gleizes P; Mathieu H
    Histochemistry; 1991; 95(5):459-69. PubMed ID: 1869447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo.
    Dodds RA; Ali N; Pead MJ; Lanyon LE
    J Bone Miner Res; 1993 Mar; 8(3):261-7. PubMed ID: 8456583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme histochemistry of bone and cartilage cells.
    Doty SB; Schofield BH
    Prog Histochem Cytochem; 1976; 8(1):1-38. PubMed ID: 185660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.