BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14729124)

  • 1. Protonation effect on drug affinity.
    Raffa RB; Stagliano GW; Spencer SD
    Eur J Pharmacol; 2004 Jan; 483(2-3):323-4. PubMed ID: 14729124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the design of ribonuclease (RNase) inhibitors: ion effects on the thermodynamics of binding of 2'-CMP to RNase A.
    Spencer SD; Abdul O; Schulingkamp RJ; Raffa RB
    J Pharmacol Exp Ther; 2002 Jun; 301(3):925-9. PubMed ID: 12023520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric techniques in the study of high-order DNA-drug interactions.
    Haq I; Chowdhry BZ; Jenkins TC
    Methods Enzymol; 2001; 340():109-49. PubMed ID: 11494846
    [No Abstract]   [Full Text] [Related]  

  • 4. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry.
    Baker BM; Murphy KP
    Biophys J; 1996 Oct; 71(4):2049-55. PubMed ID: 8889179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isothermal titration calorimetry to determine association constants for high-affinity ligands.
    Velazquez-Campoy A; Freire E
    Nat Protoc; 2006; 1(1):186-91. PubMed ID: 17406231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward RNase inhibitors: thermodynamics of 2'-CMP/RNase-A binding in multi-ion buffer.
    Raffa RB; Spencer SD; Schulingkamp RJ
    Biochem Pharmacol; 2002 Jun; 63(11):1937-9. PubMed ID: 12093469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcalorimetric and zeta potential study on binding of drugs on liposomes.
    Ikonen M; Murtomäki L; Kontturi K
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):275-82. PubMed ID: 20399079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of acidity constants for weak acids and bases by isothermal titration calorimetry.
    Samuelsen L; Holm R; Lathuile A; Schönbeck C
    J Pharm Biomed Anal; 2020 May; 184():113206. PubMed ID: 32126458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An isothermal titration and differential scanning calorimetry study of the G-quadruplex DNA-insulin interaction.
    Timmer CM; Michmerhuizen NL; Witte AB; Van Winkle M; Zhou D; Sinniah K
    J Phys Chem B; 2014 Feb; 118(7):1784-90. PubMed ID: 24459986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isothermal titration calorimetry and differential scanning calorimetry.
    Holdgate G
    Methods Mol Biol; 2009; 572():101-33. PubMed ID: 20694688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.
    Krainer G; Broecker J; Vargas C; Fanghänel J; Keller S
    Anal Chem; 2012 Dec; 84(24):10715-22. PubMed ID: 23130786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of protein-ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data.
    Krimmer SG; Klebe G
    J Comput Aided Mol Des; 2015 Sep; 29(9):867-83. PubMed ID: 26376645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Van't Hoff and calorimetric enthalpies from isothermal titration calorimetry: are there significant discrepancies?
    Horn JR; Russell D; Lewis EA; Murphy KP
    Biochemistry; 2001 Feb; 40(6):1774-8. PubMed ID: 11327839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chasing protons: how isothermal titration calorimetry, mutagenesis, and pKa calculations trace the locus of charge in ligand binding to a tRNA-binding enzyme.
    Neeb M; Czodrowski P; Heine A; Barandun LJ; Hohn C; Diederich F; Klebe G
    J Med Chem; 2014 Jul; 57(13):5554-65. PubMed ID: 24955548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics.
    Aweda TA; Meares CF
    Methods; 2012 Feb; 56(2):145-53. PubMed ID: 21964396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton exchange coupled to the specific binding of alkylsulfonates to serum albumins.
    Lund H; Christensen BP; Nielsen AD; Westh P
    Biochim Biophys Acta; 2006 Jul; 1764(7):1243-51. PubMed ID: 16831575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study.
    Barbieri CM; Pilch DS
    Biophys J; 2006 Feb; 90(4):1338-49. PubMed ID: 16326918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalorimetry of biological macromolecules.
    Privalov PL; Dragan AI
    Biophys Chem; 2007 Mar; 126(1-3):16-24. PubMed ID: 16781052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.
    Jaskulski L; Rosado LA; Rostirolla DC; Timmers LF; de Souza ON; Santos DS; Basso LA
    Arch Biochem Biophys; 2013 Aug; 536(1):53-63. PubMed ID: 23756762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.