BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14729227)

  • 1. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio).
    Kim YJ; Nam RH; Yoo YM; Lee CJ
    Neurosci Lett; 2004 Jan; 355(1-2):29-32. PubMed ID: 14729227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA.
    Edwards MD; White AM; Platt B
    Neuroscience; 2002; 110(1):93-104. PubMed ID: 11882375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons.
    Wang J; McFadden SL; Caspary D; Salvi R
    Brain Res; 2002 Jul; 944(1-2):219-31. PubMed ID: 12106684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal shaping of phasic neuronal responses by GABA- and non-GABA-mediated mechanisms in the somatosensory thalamus of the rat.
    Vahle-Hinz C; Hicks TP
    Exp Brain Res; 2003 Dec; 153(3):310-21. PubMed ID: 14504856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio).
    Díaz ML; Becerra M; Manso MJ; Anadón R
    J Comp Neurol; 2002 Aug; 450(1):45-60. PubMed ID: 12124766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion processing in the auditory cortex of the rufous horseshoe bat: role of GABAergic inhibition.
    Firzlaff U; Schuller G
    Eur J Neurosci; 2001 Nov; 14(10):1687-701. PubMed ID: 11860463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocytochemical localization of the GABAA/benzodiazepine receptor beta2/beta3 subunits in the optic tectum of the salmon.
    Anzelius M; Ekstrom P; Mohler H; Richards JG
    J Recept Signal Transduct Res; 1995; 15(1-4):413-25. PubMed ID: 8903954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effect of 17beta-estradiol in the parabrachial nucleus is mediated by GABA.
    Saleh TM; Saleh MC
    Brain Res; 2001 Aug; 911(2):116-24. PubMed ID: 11511378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin modifies the neuronal inhibitory responses to gamma-aminobutyric acid in the red nucleus: a microiontophoretic study in the rat.
    Licata F; Li Volsi G; Di Mauro M; Fretto G; Ciranna L; Santangelo F
    Exp Neurol; 2001 Jan; 167(1):95-107. PubMed ID: 11161597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic demonstration of neurons and synaptic terminals selectively accumulating (3H)GABA in goldfish optic tectum.
    Villani L; Contestabile A; Niso R
    Basic Appl Histochem; 1982; 26(3):185-91. PubMed ID: 7138459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis.
    Hollis DM; Boyd SK
    Brain Behav Evol; 2005; 65(2):127-42. PubMed ID: 15627724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range effects of GABAergic inhibition in gerbil primary auditory cortex.
    Moeller CK; Kurt S; Happel MF; Schulze H
    Eur J Neurosci; 2010 Jan; 31(1):49-59. PubMed ID: 20092555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picrotoxin and bicuculline have different effects on lumbar spinal networks and motoneurons in the neonatal rat.
    Pflieger JF; Clarac F; Vinay L
    Brain Res; 2002 May; 935(1-2):81-6. PubMed ID: 12062476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the γ-aminobutyric acid signaling system in the zebrafish (Danio rerio Hamilton) central nervous system by reverse transcription-quantitative polymerase chain reaction.
    Cocco A; Rönnberg AM; Jin Z; André GI; Vossen LE; Bhandage AK; Thörnqvist PO; Birnir B; Winberg S
    Neuroscience; 2017 Feb; 343():300-321. PubMed ID: 27453477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon.
    Berglund K; Schleich W; Wang H; Feng G; Hall WC; Kuner T; Augustine GJ
    Brain Cell Biol; 2008 Aug; 36(1-4):101-18. PubMed ID: 18850274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.
    Jirmann KU; Pernberg J; Eysel UT
    Exp Brain Res; 2009 Jan; 192(3):369-78. PubMed ID: 18841356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish.
    Song Y; Tao B; Chen J; Jia S; Zhu Z; Trudeau VL; Hu W
    Endocrinology; 2017 Apr; 158(4):874-886. PubMed ID: 28324056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.