These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 14729244)

  • 1. The human brain processes repeated auditory feature conjunctions of low sequential probability.
    Ruusuvirta T; Huotilainen M
    Neurosci Lett; 2004 Jan; 355(1-2):97-100. PubMed ID: 14729244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newborn human brain identifies repeated auditory feature conjunctions of low sequential probability.
    Ruusuvirta T; Huotilainen M; Fellman V; Näätänen R
    Eur J Neurosci; 2004 Nov; 20(10):2819-21. PubMed ID: 15548225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal integration of deviant sound in automatic detection reflected by mismatch negativity.
    Shiga T; Yabe H; Yu L; Nozaki M; Itagaki S; Lan TH; Niwa S
    Neuroreport; 2011 May; 22(7):337-41. PubMed ID: 21502927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personal significance is encoded automatically by the human brain: an event-related potential study with ringtones.
    Roye A; Jacobsen T; Schröger E
    Eur J Neurosci; 2007 Aug; 26(3):784-90. PubMed ID: 17634070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.
    Backer KC; Binns MA; Alain C
    J Neurosci; 2015 Jan; 35(3):1307-18. PubMed ID: 25609643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects.
    Takegata R; Brattico E; Tervaniemi M; Varyagina O; Näätänen R; Winkler I
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):169-79. PubMed ID: 15953710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fast detection of rare auditory feature conjunctions in the human brain as revealed by cortical gamma-band electroencephalogram.
    Ruusuvirta T; Huotilainen M
    Neuroscience; 2005; 130(1):91-4. PubMed ID: 15561427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Familiarity of environmental sounds is used to establish auditory rules.
    Kirmse U; Schröger E; Jacobsen T
    Neuroreport; 2012 Mar; 23(5):320-4. PubMed ID: 22410549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The newborn human brain binds sound features together.
    Ruusuvirta T; Huotilainen M; Fellman V; Näätänen R
    Neuroreport; 2003 Nov; 14(16):2117-9. PubMed ID: 14600508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-attentive spectro-temporal feature processing in the human auditory system.
    Zaehle T; Jancke L; Herrmann CS; Meyer M
    Brain Topogr; 2009 Sep; 22(2):97-108. PubMed ID: 19266276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Familiarity affects environmental sound processing outside the focus of attention: an event-related potential study.
    Kirmse U; Jacobsen T; Schröger E
    Clin Neurophysiol; 2009 May; 120(5):887-96. PubMed ID: 19345610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the short-term learned significance of task-irrelevant sounds on involuntary attention in children and adults.
    Wetzel N
    Int J Psychophysiol; 2015 Oct; 98(1):17-26. PubMed ID: 26093029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Music playing and memory trace: evidence from event-related potentials.
    Kamiyama K; Katahira K; Abla D; Hori K; Okanoya K
    Neurosci Res; 2010 Aug; 67(4):334-40. PubMed ID: 20403394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitasking: Effects of processing multiple auditory feature patterns.
    Miller T; Chen S; Lee WW; Sussman ES
    Psychophysiology; 2015 Sep; 52(9):1140-8. PubMed ID: 25939456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Listen up! Processing of intensity change differs for vocal and nonvocal sounds.
    Schirmer A; Simpson E; Escoffier N
    Brain Res; 2007 Oct; 1176():103-12. PubMed ID: 17900543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-impression bias effects on mismatch negativity to auditory spatial deviants.
    Fitzgerald K; Provost A; Todd J
    Psychophysiology; 2018 Apr; 55(4):. PubMed ID: 28972671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic auditory change detection in humans is influenced by visual-auditory associative learning.
    Laine M; Kwon MS; Hämäläinen H
    Neuroreport; 2007 Oct; 18(16):1697-701. PubMed ID: 17921871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature conjunctions and auditory sensory memory.
    Sussman E; Gomes H; Nousak JM; Ritter W; Vaughan HG
    Brain Res; 1998 May; 793(1-2):95-102. PubMed ID: 9630541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature binding in auditory modality requires attention as indexed by mismatch negativity and N2b in an active discrimination task.
    Lazarev IE; Sayfulina KE; Chernysheva EG; Bryzgalov DV; Chernyshev BV
    Neuroreport; 2018 Mar; 29(4):308-313. PubMed ID: 29293173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.