These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14729337)

  • 1. Redefinition of the cleavage sites of DNase I on the nucleosome core particle.
    Cousins DJ; Islam SA; Sanderson MR; Proykova YG; Crane-Robinson C; Staynov DZ
    J Mol Biol; 2004 Jan; 335(5):1199-211. PubMed ID: 14729337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping nucleosome positions using DNase-seq.
    Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ
    Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription of dinucleosomal templates.
    Wolffe AP; Ura K
    Methods; 1997 May; 12(1):10-9. PubMed ID: 9169190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1.
    Boyes J; Omichinski J; Clark D; Pikaart M; Felsenfeld G
    J Mol Biol; 1998 Jun; 279(3):529-44. PubMed ID: 9641976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease.
    McGhee JD; Felsenfeld G
    Cell; 1983 Apr; 32(4):1205-15. PubMed ID: 6301684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNAase I, DNAase II and staphylococcal nuclease cut at different, yet symmetrically located, sites in the nucleosome core.
    Sollner-Webb B; Melchior W; Felsenfeld G
    Cell; 1978 Jul; 14(3):611-27. PubMed ID: 688384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of nucleosomes with histone macroH2A1.2.
    Changolkar LN; Pehrson JR
    Biochemistry; 2002 Jan; 41(1):179-84. PubMed ID: 11772015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNase I footprinting of the nucleosome in whole nuclei.
    Staynov DZ
    Biochem Biophys Res Commun; 2008 Jul; 372(1):226-9. PubMed ID: 18485894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micrococcal nuclease does not substantially bias nucleosome mapping.
    Allan J; Fraser RM; Owen-Hughes T; Keszenman-Pereyra D
    J Mol Biol; 2012 Mar; 417(3):152-64. PubMed ID: 22310051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid.
    Riley DE
    Biochemistry; 1980 Jun; 19(13):2977-92. PubMed ID: 6249343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNase I digestion reveals alternating asymmetrical protection of the nucleosome by the higher order chromatin structure.
    Staynov DZ
    Nucleic Acids Res; 2000 Aug; 28(16):3092-9. PubMed ID: 10931924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome core particle self-assembly kinetics and stability at physiological ionic strength.
    Diaz P; Daban JR
    Biochemistry; 1986 Nov; 25(23):7736-44. PubMed ID: 3801441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The salt dependence of chicken and yeast chromatin structure. Effects on internucleosomal organization and relation to active chromatin.
    Lohr D
    J Biol Chem; 1986 Jul; 261(21):9904-14. PubMed ID: 3733698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features.
    Rao BJ; Rao MR
    J Biol Chem; 1987 Apr; 262(10):4472-6. PubMed ID: 3558350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosomes associated with newly replicated DNA have an altered conformation.
    Seale RL
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2717-21. PubMed ID: 275840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in chromatin structure at the replication fork. DNase I and trypsin-micrococcal nuclease effects on approximately 300- and 150-base pair nascent DNAs.
    Galili G; Levy A; Jakob KM
    J Biol Chem; 1983 Sep; 258(18):11274-9. PubMed ID: 6224796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclease sensitivity of active chromatin.
    Gazit B; Cedar H
    Nucleic Acids Res; 1980 Nov; 8(22):5143-55. PubMed ID: 6258137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nuclease sensitivity of active genes.
    Nicolas RH; Wright CA; Cockerill PN; Wyke JA; Goodwin GH
    Nucleic Acids Res; 1983 Feb; 11(3):753-72. PubMed ID: 6300766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.