These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14729927)

  • 1. Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells.
    Fadel S; Eley A
    J Med Microbiol; 2004 Feb; 53(Pt 2):93-95. PubMed ID: 14729927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.
    Taraktchoglou M; Pacey AA; Turnbull JE; Eley A
    Infect Immun; 2001 Feb; 69(2):968-76. PubMed ID: 11159992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans.
    Stephens RS; Poteralski JM; Olinger L
    Infect Immun; 2006 Mar; 74(3):1795-9. PubMed ID: 16495553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding.
    Moelleken K; Hegemann JH
    Mol Microbiol; 2008 Jan; 67(2):403-19. PubMed ID: 18086188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells.
    Rasmussen-Lathrop SJ; Koshiyama K; Phillips N; Stephens RS
    Cell Microbiol; 2000 Apr; 2(2):137-44. PubMed ID: 11207570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells.
    Stephens RS
    Trends Microbiol; 1994 Mar; 2(3):99-101. PubMed ID: 8156278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells.
    Chen JC; Stephens RS
    Microb Pathog; 1997 Jan; 22(1):23-30. PubMed ID: 9032759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV.
    Fadel S; Eley A
    J Med Microbiol; 2008 Sep; 57(Pt 9):1058-1061. PubMed ID: 18719173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process.
    Carabeo RA; Hackstadt T
    Infect Immun; 2001 Sep; 69(9):5899-904. PubMed ID: 11500469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural requirements of heparin binding to Chlamydia trachomatis.
    Chen JC; Zhang JP; Stephens RS
    J Biol Chem; 1996 May; 271(19):11134-40. PubMed ID: 8626658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphated and undersulphated heparan sulphate proteoglycans in a Chinese hamster ovary cell mutant defective in N-sulphotransferase.
    Bame KJ; Zhang L; David G; Esko JD
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):81-7. PubMed ID: 7945269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is lipopolysaccharide a factor in infectivity of Chlamydia trachomatis?
    Fadel S; Eley A
    J Med Microbiol; 2008 Mar; 57(Pt 3):261-266. PubMed ID: 18287286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorate: a reversible inhibitor of proteoglycan sulfation.
    Humphries DE; Silbert JE
    Biochem Biophys Res Commun; 1988 Jul; 154(1):365-71. PubMed ID: 2969240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells.
    Su H; Raymond L; Rockey DD; Fischer E; Hackstadt T; Caldwell HD
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):11143-8. PubMed ID: 8855323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate.
    Keller KM; Brauer PR; Keller JM
    Biochemistry; 1989 Oct; 28(20):8100-7. PubMed ID: 2532538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of evidence of a relationship between genital symptoms, cervicitis and salpingitis and different serovars of Chlamydia trachomatis.
    Persson K; Osser S
    Eur J Clin Microbiol Infect Dis; 1993 Mar; 12(3):195-9. PubMed ID: 8508818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival and death of intestinal cells infected by Chlamydia trachomatis.
    Foschi C; Bortolotti M; Marziali G; Polito L; Marangoni A; Bolognesi A
    PLoS One; 2019; 14(4):e0215956. PubMed ID: 31026281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.