BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 1473044)

  • 1. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA; Ellory JC; Young JD
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA; Mason DK; Paterson JY; Young JD
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breed and species comparison of amino acid transport variation in equine erythrocytes.
    Fincham DA; Young JD; Mason DK; Collins EA; Snow DH
    Res Vet Sci; 1985 May; 38(3):346-51. PubMed ID: 4012037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes.
    Young JD; Mason DK; Fincham DA
    J Biol Chem; 1988 Jan; 263(1):140-3. PubMed ID: 3121605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD; Wolowyk MW; Jones SM; Ellory JC
    Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA; Mason DK; Young JD
    Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved sperm cryosurvival in diluents containing amides versus glycerol in the Przewalski's horse (Equus ferus przewalskii).
    Pukazhenthi BS; Johnson A; Guthrie HD; Songsasen N; Padilla LR; Wolfe BA; Coutinho da Silva M; Alvarenga MA; Wildt DE
    Cryobiology; 2014 Apr; 68(2):205-14. PubMed ID: 24508651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.
    Lau AN; Peng L; Goto H; Chemnick L; Ryder OA; Makova KD
    Mol Biol Evol; 2009 Jan; 26(1):199-208. PubMed ID: 18931383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproduction and Development of the Released Przewalski's Horses (Equus przewalskii) in Xinjiang, China.
    Chen J; Weng Q; Chao J; Hu D; Taya K
    J Equine Sci; 2008; 19(1):1-7. PubMed ID: 24833949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid transport in human and in sheep erythrocytes.
    Young JD; Jones SE; Ellory JC
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site.
    Van Winkle LJ; Campione AL; Gorman JM
    Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV; Christensen HN
    J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of insulin and the C-peptide of proinsulin from Przewalski's horse, zebra, rhino, and tapir (Perissodactyla).
    Henry JS; Lance VA; Conlon JM
    Gen Comp Endocrinol; 1993 Feb; 89(2):299-308. PubMed ID: 8454175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PITUITARY PARS INTERMEDIA DYSFUNCTION (EQUINE CUSHING'S DISEASE) IN NONDOMESTIC EQUIDS AT MARWELL WILDLIFE: A CASE SERIES. ONE CHAPMAN'S ZEBRA ( EQUUS QUAGGA CHAPMANI) AND FIVE PRZEWALSKI's HORSES ( EQUUS FERUS PRZEWALSKII).
    Shotton JCR; Justice WSM; Salguero FJ; Stevens A; Bacci B
    J Zoo Wildl Med; 2018 Jun; 49(2):404-411. PubMed ID: 29900762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastrointestinal Parasitism in Przewalski Horses (Equus ferus przewalskii).
    Jota Baptista C; Sós E; Madeira de Carvalho L
    Acta Parasitol; 2021 Dec; 66(4):1095-1101. PubMed ID: 33886041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological character of the shoulder and leg skeleton in Przewalski's horse (Equus przewalskii).
    Sasaki M; Endo H; Yamagiwa D; Yamamoto M; Arishima K; Hayashi Y
    Ann Anat; 1999 Jul; 181(4):403-7. PubMed ID: 10427379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coccidioidomycosis in Przewalski's horses (Equus przewalskii).
    Terio KA; Stalis IH; Allen JL; Stott JL; Worley MB
    J Zoo Wildl Med; 2003 Dec; 34(4):339-45. PubMed ID: 15077708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.