These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 14730704)

  • 61. Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease.
    Spitzer S; Volbracht K; Lundgaard I; Káradóttir RT
    Neuropharmacology; 2016 Nov; 110(Pt B):574-585. PubMed ID: 27346208
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Direct observation of myelination in vivo in the mature human central nervous system. A model for the behaviour of oligodendrocyte progenitors and their progeny.
    Hunter SF; Leavitt JA; Rodriguez M
    Brain; 1997 Nov; 120 ( Pt 11)():2071-82. PubMed ID: 9397022
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells.
    Zujovic V; Thibaud J; Bachelin C; Vidal M; Coulpier F; Charnay P; Topilko P; Baron-Van Evercooren A
    Stem Cells; 2010 Mar; 28(3):470-9. PubMed ID: 20039366
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG).
    Bartsch S; Montag D; Schachner M; Bartsch U
    Brain Res; 1997 Jul; 762(1-2):231-4. PubMed ID: 9262180
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CD44 is required for the migration of transplanted oligodendrocyte progenitor cells to focal inflammatory demyelinating lesions in the spinal cord.
    Piao JH; Wang Y; Duncan ID
    Glia; 2013 Mar; 61(3):361-7. PubMed ID: 23280959
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Matter of State: Diversity in Oligodendrocyte Lineage Cells.
    Kamen Y; Pivonkova H; Evans KA; Káradóttir RT
    Neuroscientist; 2022 Apr; 28(2):144-162. PubMed ID: 33567971
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Do central nervous system axons remyelinate?
    Nait-Oumesmar B; Lachapelle F; Decker L; Baron-Van Evercooren A
    Pathol Biol (Paris); 2000 Feb; 48(1):70-9. PubMed ID: 10729914
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives.
    Huang H; Zhao XF; Zheng K; Qiu M
    Neurosci Bull; 2013 Apr; 29(2):155-64. PubMed ID: 23456566
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system.
    Penderis J; Shields SA; Franklin RJ
    Brain; 2003 Jun; 126(Pt 6):1382-91. PubMed ID: 12764059
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Remyelinating strategies for the treatment of multiple sclerosis.
    Stangel M; Hartung HP
    Prog Neurobiol; 2002 Dec; 68(5):361-76. PubMed ID: 12531235
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of a central nervous system axonal myelination assay for high throughput screening.
    Lariosa-Willingham KD; Rosler ES; Tung JS; Dugas JC; Collins TL; Leonoudakis D
    BMC Neurosci; 2016 Apr; 17():16. PubMed ID: 27103572
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calcium Signaling in the Oligodendrocyte Lineage: Regulators and Consequences.
    Paez PM; Lyons DA
    Annu Rev Neurosci; 2020 Jul; 43():163-186. PubMed ID: 32075518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal Myelination in Mice.
    Cheli VT; Santiago González DA; Namgyal Lama T; Spreuer V; Handley V; Murphy GG; Paez PM
    J Neurosci; 2016 Oct; 36(42):10853-10869. PubMed ID: 27798140
    [TBL] [Abstract][Full Text] [Related]  

  • 75. N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination.
    Bacon C; Lakics V; Machesky L; Rumsby M
    Glia; 2007 Jun; 55(8):844-58. PubMed ID: 17405146
    [TBL] [Abstract][Full Text] [Related]  

  • 76. White matter plasticity and enhanced remyelination in the maternal CNS.
    Gregg C; Shikar V; Larsen P; Mak G; Chojnacki A; Yong VW; Weiss S
    J Neurosci; 2007 Feb; 27(8):1812-23. PubMed ID: 17314279
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kappa opioid receptor and oligodendrocyte remyelination.
    Wang F; Mei F
    Vitam Horm; 2019; 111():281-297. PubMed ID: 31421704
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formation of the myelinated nerve fiber layer in the chicken retina.
    Nakazawa T; Tachi S; Aikawa E; Ihnuma M
    Glia; 1993 Jun; 8(2):114-21. PubMed ID: 7691736
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Axonal Regulation of Central Nervous System Myelination: Structure and Function.
    Klingseisen A; Lyons DA
    Neuroscientist; 2018 Feb; 24(1):7-21. PubMed ID: 28397586
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Remyelination: the true regeneration of the central nervous system.
    Crawford AH; Chambers C; Franklin RJ
    J Comp Pathol; 2013; 149(2-3):242-54. PubMed ID: 23831056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.