BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14730964)

  • 1. Successful design and synthesis of a polarity-triggered beta-->alpha conformational switch using the side chain interaction index (SCII) as a measure of local structural stability.
    Gehenn K; Pipkorn R; Reed J
    Biochemistry; 2004 Jan; 43(3):607-12. PubMed ID: 14730964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrad selectivity in polarity-driven switch peptides: the best turn is not always the best nucleation site.
    Gehenn K; Reed J
    J Pept Sci; 2011 Jan; 17(1):56-67. PubMed ID: 20878680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the polarity-dependent "switch phenomenon" of the gp120 binding domain as a target for antiviral chemotherapy.
    Graf von Stosch A; Kinzel V; Reed J
    Biochemistry; 1996 Jan; 35(2):411-7. PubMed ID: 8555210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure elements responsible for the conformational switch in the envelope glycoprotein gp120 from human immunodeficiency virus type 1: LPCR is a motif governing folding.
    Reed J; Kinzel V
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6761-5. PubMed ID: 8341695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the structural components governing the polarity-dependent refolding of a CD4-binding peptide from gp120.
    Graf von Stosch A; Kinzel V; Pipkorn R; Reed J
    J Mol Biol; 1995 Jul; 250(4):507-13. PubMed ID: 7616571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of the proposed beta-hairpin form of the switch domain from HIV1 gp120 alone and complexed with an inhibitor of CD4 binding.
    Graf von Stosch A; von der Lieth CW; Reed J
    Proteins; 1999 Feb; 34(2):197-205. PubMed ID: 10022355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent polarity-dependent structural refolding: a CD and NMR study of a 15 residue peptide.
    Graf von Stosch A; Jiménez MA; Kinzel V; Reed J
    Proteins; 1995 Oct; 23(2):196-203. PubMed ID: 8592701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor.
    Suzuki K; Yamada T; Tanaka T
    Biochemistry; 1999 Feb; 38(6):1751-6. PubMed ID: 10026254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the sequence motifs responsible for the interactions of peroxins 14 and 5, which are involved in glycosome biogenesis in Trypanosoma brucei.
    Choe J; Moyersoen J; Roach C; Carter TL; Fan E; Michels PA; Hol WG
    Biochemistry; 2003 Sep; 42(37):10915-22. PubMed ID: 12974625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational study of fragments of envelope proteins (gp120: 254-274 and gp41: 519-541) of HIV-1 by NMR and MD simulations.
    Kanyalkar M; Srivastava S; Saran A; Coutinho E
    J Pept Sci; 2004 Jun; 10(6):363-80. PubMed ID: 15214441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable proline box motif at the N-terminal end of alpha-helices.
    Viguera AR; Serrano L
    Protein Sci; 1999 Sep; 8(9):1733-42. PubMed ID: 10493574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational properties of five peptides corresponding to the entire sequence of glutathione transferase domain II.
    Dragani B; Cocco R; Principe DR; Paludi D; Aceto A
    Arch Biochem Biophys; 2001 May; 389(1):15-21. PubMed ID: 11370666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation.
    Wetzler DE; Gallo M; Melis R; Eliseo T; Nadra AD; Ferreiro DU; Paci M; Sánchez IE; Cicero DO; de Prat Gay G
    Biopolymers; 2009 Jun; 91(6):432-43. PubMed ID: 19156829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analysis of the Galpha(s) protein C-terminal region.
    Dursi AM; Albrizio S; Greco G; Mazzeo S; Mazzoni MR; Novellino E; Rovero P
    J Pept Sci; 2002 Aug; 8(8):476-88. PubMed ID: 12212810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation.
    Wang M; Shan L; Wang J
    Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The side chain interaction index as a tool for predicting fast-folding elements and the structure and stability of engineered peptides.
    Gehenn K; Stege J; Reed J
    Anal Biochem; 2006 Sep; 356(1):12-7. PubMed ID: 16860775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides.
    Bertho G; Bouvier G; Hoa GH; Girault JP
    Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo proteins as models of radical enzymes.
    Tommos C; Skalicky JJ; Pilloud DL; Wand AJ; Dutton PL
    Biochemistry; 1999 Jul; 38(29):9495-507. PubMed ID: 10413527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site, 2: relevance of an N-terminal helix.
    Oliva R; Falcigno L; D'Auria G; Dettin M; Scarinci C; Pasquato A; Di Bello C; Paolillo L
    Chembiochem; 2003 Aug; 4(8):727-33. PubMed ID: 12898623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.