These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 14730971)
1. Roles of N-terminal region residues Lys11, Arg13, and Arg24 of antithrombin in heparin recognition and in promotion and stabilization of the heparin-induced conformational change. Schedin-Weiss S; Desai UR; Bock SC; Olson ST; Björk I Biochemistry; 2004 Jan; 43(3):675-83. PubMed ID: 14730971 [TBL] [Abstract][Full Text] [Related]
2. The role of Arg46 and Arg47 of antithrombin in heparin binding. Arocas V; Bock SC; Olson ST; Björk I Biochemistry; 1999 Aug; 38(31):10196-204. PubMed ID: 10433728 [TBL] [Abstract][Full Text] [Related]
3. Importance of tryptophan 49 of antithrombin in heparin binding and conformational activation. Monien BH; Krishnasamy C; Olson ST; Desai UR Biochemistry; 2005 Sep; 44(35):11660-8. PubMed ID: 16128566 [TBL] [Abstract][Full Text] [Related]
4. Lysine 114 of antithrombin is of crucial importance for the affinity and kinetics of heparin pentasaccharide binding. Arocas V; Bock SC; Raja S; Olson ST; Bjork I J Biol Chem; 2001 Nov; 276(47):43809-17. PubMed ID: 11567021 [TBL] [Abstract][Full Text] [Related]
5. Importance of lysine 125 for heparin binding and activation of antithrombin. Schedin-Weiss S; Desai UR; Bock SC; Gettins PG; Olson ST; Björk I Biochemistry; 2002 Apr; 41(15):4779-88. PubMed ID: 11939772 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites. Desai UR; Petitou M; Björk I; Olson ST Biochemistry; 1998 Sep; 37(37):13033-41. PubMed ID: 9737884 [TBL] [Abstract][Full Text] [Related]
7. High affinity interaction between a synthetic, highly negatively charged pentasaccharide and alpha- or beta-antithrombin is predominantly due to nonionic interactions. Hjelm R; Schedin-Weiss S Biochemistry; 2007 Mar; 46(11):3378-84. PubMed ID: 17323934 [TBL] [Abstract][Full Text] [Related]
8. The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Turk B; Brieditis I; Bock SC; Olson ST; Björk I Biochemistry; 1997 Jun; 36(22):6682-91. PubMed ID: 9184148 [TBL] [Abstract][Full Text] [Related]
9. Structure-function relations of antithrombin III-heparin interactions as assessed by biophysical and biological assays and molecular modeling of peptide-pentasaccharide-docked complexes. Tyler-Cross R; Sobel M; McAdory LE; Harris RB Arch Biochem Biophys; 1996 Oct; 334(2):206-13. PubMed ID: 8900394 [TBL] [Abstract][Full Text] [Related]
10. Specificity of the basic side chains of Lys114, Lys125, and Arg129 of antithrombin in heparin binding. Schedin-Weiss S; Arocas V; Bock SC; Olson ST; Björk I Biochemistry; 2002 Oct; 41(41):12369-76. PubMed ID: 12369826 [TBL] [Abstract][Full Text] [Related]
11. The region of antithrombin interacting with full-length heparin chains outside the high-affinity pentasaccharide sequence extends to Lys136 but not to Lys139. Arocas V; Turk B; Bock SC; Olson ST; Björk I Biochemistry; 2000 Jul; 39(29):8512-8. PubMed ID: 10913257 [TBL] [Abstract][Full Text] [Related]
12. Introduction of a mutation in the shutter region of antithrombin (Phe77 --> Leu) increases affinity for heparin and decreases thermal stability. Quinsey NS; Fitton HL; Coughlin P; Whisstock JC; Dafforn TR; Carrell RW; Bottomley SP; Pike RN Biochemistry; 2003 Sep; 42(34):10169-73. PubMed ID: 12939144 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis studies toward understanding the mechanism of differential reactivity of factor Xa with the native and heparin-activated antithrombin. Rezaie AR; Yang L; Manithody C Biochemistry; 2004 Mar; 43(10):2898-905. PubMed ID: 15005625 [TBL] [Abstract][Full Text] [Related]
14. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. Olson ST; Björk I; Sheffer R; Craig PA; Shore JD; Choay J J Biol Chem; 1992 Jun; 267(18):12528-38. PubMed ID: 1618758 [TBL] [Abstract][Full Text] [Related]
15. Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin. Whisstock JC; Pike RN; Jin L; Skinner R; Pei XY; Carrell RW; Lesk AM J Mol Biol; 2000 Sep; 301(5):1287-305. PubMed ID: 10966821 [TBL] [Abstract][Full Text] [Related]
16. Role of N- and C-terminal amino acids in antithrombin binding to pentasaccharide. Mille B; Watton J; Barrowcliffe TW; Mani JC; Lane DA J Biol Chem; 1994 Nov; 269(47):29435-43. PubMed ID: 7961924 [TBL] [Abstract][Full Text] [Related]
17. The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. Richard B; Swanson R; Olson ST J Biol Chem; 2009 Oct; 284(40):27054-64. PubMed ID: 19661062 [TBL] [Abstract][Full Text] [Related]
18. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Rosenberg RD Fed Proc; 1985 Feb; 44(2):404-9. PubMed ID: 3155697 [TBL] [Abstract][Full Text] [Related]
19. Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Richard B; Swanson R; Izaguirre G; Olson ST Biochemistry; 2018 Apr; 57(15):2211-2226. PubMed ID: 29561141 [TBL] [Abstract][Full Text] [Related]
20. Energetics of hydrogen bond switch, residue burial and cavity analysis reveals molecular basis of improved heparin binding to antithrombin. Singh P; Singh K; Jairajpuri MA J Biomol Struct Dyn; 2011 Oct; 29(2):339-50. PubMed ID: 21875153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]