These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14731047)

  • 21. Synthesis of hexagonal boron nitride graphene-like few layers.
    Yuan S; Toury B; Journet C; Brioude A
    Nanoscale; 2014 Jul; 6(14):7838-41. PubMed ID: 24914881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conductivity of nanostructured boron nitride materials.
    Tang C; Bando Y; Liu C; Fan S; Zhang J; Ding X; Golberg D
    J Phys Chem B; 2006 Jun; 110(21):10354-7. PubMed ID: 16722739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films.
    Sutter P; Lahiri J; Albrecht P; Sutter E
    ACS Nano; 2011 Sep; 5(9):7303-9. PubMed ID: 21793550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and structures of iron nanoparticles coated with boron nitride nanomaterials.
    Narita I; Oku T; Tokoro H; Suganuma K
    J Electron Microsc (Tokyo); 2006 Jun; 55(3):123-7. PubMed ID: 16585048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lamellar lubrication in vivo and vitro: friction testing of hexagonal boron nitride.
    Pawlak Z; Pai R; Bayraktar E; Kaldonski T; Oloyede A
    Biosystems; 2008 Dec; 94(3):202-8. PubMed ID: 18721855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetraethylenepentamine-directed controllable synthesis of wurtzite ZnSe nanostructures with tunable morphology.
    Xi B; Xiong S; Xu D; Li J; Zhou H; Pan J; Li J; Qian Y
    Chemistry; 2008; 14(31):9786-91. PubMed ID: 18792043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets.
    Wakahara T; Sathish M; Miyazawa K; Hu C; Tateyama Y; Nemoto Y; Sasaki T; Ito O
    J Am Chem Soc; 2009 Jul; 131(29):9940-4. PubMed ID: 19569649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An all-purpose building block: B12N12 fullerene.
    Li JL; He T; Yang GW
    Nanoscale; 2012 Mar; 4(5):1665-70. PubMed ID: 22294038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.
    Zhang Z; Zeng XC; Guo W
    J Am Chem Soc; 2011 Sep; 133(37):14831-8. PubMed ID: 21834534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures.
    Du A; Chen Y; Zhu Z; Amal R; Lu GQ; Smith SC
    J Am Chem Soc; 2009 Dec; 131(47):17354-9. PubMed ID: 19929022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes.
    Kim SY; Park J; Choi HC; Ahn JP; Hou JQ; Kang HS
    J Am Chem Soc; 2007 Feb; 129(6):1705-16. PubMed ID: 17243688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.
    Sun G; Sun L; Wen H; Jia Z; Huang K; Hu C
    J Phys Chem B; 2006 Jul; 110(27):13375-80. PubMed ID: 16821857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-temperature solid state synthesis and in situ phase transformation to prepare nearly pure cBN.
    Lian G; Zhang X; Tan M; Zhang S; Cui D; Wang Q
    Dalton Trans; 2011 Jul; 40(26):6961-7. PubMed ID: 21643604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical energy minimization model for joining boron nitride fullerene with several BN nanostructures.
    Alshammari NA
    J Mol Model; 2021 Aug; 27(9):245. PubMed ID: 34378059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of arrays of gallium nitride nanorods within mesoporous silica SBA-15.
    Yang CT; Huang MH
    J Phys Chem B; 2005 Sep; 109(38):17842-7. PubMed ID: 16853288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile route to metal nitride clusterfullerenes by using guanidinium salts: a selective organic solid as the nitrogen source.
    Yang S; Zhang L; Zhang W; Dunsch L
    Chemistry; 2010 Nov; 16(41):12398-405. PubMed ID: 20859965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers.
    Li XL; Ge JP; Li YD
    Chemistry; 2004 Nov; 10(23):6163-71. PubMed ID: 15515074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-phase synthesis of inorganic hollow structures by templating strategies.
    Ma Y; Qi L
    J Colloid Interface Sci; 2009 Jul; 335(1):1-10. PubMed ID: 19394632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of nitrogen-doped carbon nanostructures by the reactions of small molecule carbon halides with sodium azide.
    Wu C; Guo Q; Yin P; Li T; Yang Q; Xie Y
    J Phys Chem B; 2005 Feb; 109(7):2597-604. PubMed ID: 16851263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres.
    Song X; Gao L
    Langmuir; 2007 Nov; 23(23):11850-6. PubMed ID: 17914850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.