BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14732274)

  • 41. Production of C20 polyunsaturated fatty acids (PUFAs) by pathway engineering: identification of a PUFA elongase component from Caenorhabditis elegans.
    Beaudoin F; Michaelson LV; Lewis MJ; Shewry PR; Sayanova O; Napier JA
    Biochem Soc Trans; 2000 Dec; 28(6):661-3. PubMed ID: 11171161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.
    Ren L; Zhou P; Zhu Y; Zhang R; Yu L
    Appl Microbiol Biotechnol; 2017 May; 101(9):3769-3780. PubMed ID: 28083652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.
    Vaezi R; Napier JA; Sayanova O
    Mar Drugs; 2013 Dec; 11(12):5116-29. PubMed ID: 24351909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis.
    Domergue F; Lerchl J; Zähringer U; Heinz E
    Eur J Biochem; 2002 Aug; 269(16):4105-13. PubMed ID: 12180987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases.
    Morais S; Monroig O; Zheng X; Leaver MJ; Tocher DR
    Mar Biotechnol (NY); 2009; 11(5):627-39. PubMed ID: 19184219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methyl-end desaturases with ∆12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris.
    Garrido D; Kabeya N; Hontoria F; Navarro JC; Reis DB; Martín MV; Rodríguez C; Almansa E; Monroig Ó
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Aug; 1864(8):1134-1144. PubMed ID: 31048041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.
    Sayanova O; Haslam RP; Calerón MV; López NR; Worthy C; Rooks P; Allen MJ; Napier JA
    Phytochemistry; 2011 May; 72(7):594-600. PubMed ID: 21316718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation.
    Abbadi A; Domergue F; Bauer J; Napier JA; Welti R; Zähringer U; Cirpus P; Heinz E
    Plant Cell; 2004 Oct; 16(10):2734-48. PubMed ID: 15377762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.
    Bou M; Østbye TK; Berge GM; Ruyter B
    Lipids; 2017 Mar; 52(3):265-283. PubMed ID: 28132119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elongation of polyunsaturated fatty acids in trypanosomatids.
    Livore VI; Tripodi KE; Uttaro AD
    FEBS J; 2007 Jan; 274(1):264-74. PubMed ID: 17222186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes.
    Hashimoto K; Yoshizawa AC; Okuda S; Kuma K; Goto S; Kanehisa M
    J Lipid Res; 2008 Jan; 49(1):183-91. PubMed ID: 17921532
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the Substrate Preferences of ω3 Fatty Acid Desaturases for Long Chain Polyunsaturated Fatty Acids.
    Shrestha P; Zhou XR; Vibhakaran Pillai S; Petrie J; de Feyter R; Singh S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31234541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic engineering of new fatty acids in plants.
    Singh SP; Zhou XR; Liu Q; Stymne S; Green AG
    Curr Opin Plant Biol; 2005 Apr; 8(2):197-203. PubMed ID: 15753001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids.
    Damude HG; Kinney AJ
    Lipids; 2007 Apr; 42(3):179-85. PubMed ID: 17393224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.
    Peng Q; Hu Y; Wei R; Zhang Y; Guan C; Ruan Y; Liu C
    Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of Dietary Lipids and Environmental Salinity on the n-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost
    Marrero M; Monroig Ó; Betancor M; Herrera M; Pérez JA; Garrido D; Galindo A; Giráldez I; Rodríguez C
    Mar Drugs; 2021 Apr; 19(5):. PubMed ID: 33946805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats.
    Rodriguez-Cruz M; Sánchez R; Sánchez AM; Kelleher SL; Sánchez-Muñoz F; Maldonado J; López-Alarcón M
    Biochim Biophys Acta; 2011 Apr; 1811(4):284-93. PubMed ID: 21292028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.
    Kjær MA; Ruyter B; Berge GM; Sun Y; Østbye TK
    PLoS One; 2016; 11(12):e0168230. PubMed ID: 27973547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased elongase 6 and Δ9-desaturase activity are associated with n-7 and n-9 fatty acid changes in cystic fibrosis.
    Thomsen KF; Laposata M; Njoroge SW; Umunakwe OC; Katrangi W; Seegmiller AC
    Lipids; 2011 Aug; 46(8):669-77. PubMed ID: 21544602
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards sustainable sources for omega-3 fatty acids production.
    Adarme-Vega TC; Thomas-Hall SR; Schenk PM
    Curr Opin Biotechnol; 2014 Apr; 26():14-8. PubMed ID: 24607804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.