These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14733390)

  • 1. Rare earth elements removal by microbial biosorption: a review.
    Andrès Y; Texier AC; Le Cloirec P
    Environ Technol; 2003 Nov; 24(11):1367-75. PubMed ID: 14733390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.
    Moriwaki H; Koide R; Yoshikawa R; Warabino Y; Yamamoto H
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3721-8. PubMed ID: 22684329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation.
    Pagnanelli F; Cruz Viggi C; Toro L
    Bioresour Technol; 2010 May; 101(9):2981-7. PubMed ID: 20053554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial biosorbents and biosorption.
    Vijayaraghavan K; Yun YS
    Biotechnol Adv; 2008; 26(3):266-91. PubMed ID: 18353595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.
    Haferburg G; Merten D; Büchel G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.
    Moriwaki H; Yamamoto H
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):1-8. PubMed ID: 23111596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards rare earth element recovery from wastewaters: biosorption using phototrophic organisms.
    Heilmann M; Breiter R; Becker AM
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5229-5239. PubMed ID: 34143229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources.
    Fathollahzadeh H; Eksteen JJ; Kaksonen AH; Watkin ELJ
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1043-1057. PubMed ID: 30488284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microorganisms Accelerate REE Mineralization in Supergene Environments.
    Li X; Liang X; He H; Li J; Ma L; Tan W; Zhong Y; Zhu J; Zhou MF; Dong H
    Appl Environ Microbiol; 2022 Jul; 88(13):e0063222. PubMed ID: 35708325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process.
    Chojnacka K; Chojnacki A; Górecka H
    Chemosphere; 2005 Mar; 59(1):75-84. PubMed ID: 15698647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of pH and phosphate in rare earth element biosorption with living acidophilic microalgae.
    Kastenhofer J; Spadiut O; Papangelakis VG; Allen DG
    Appl Microbiol Biotechnol; 2024 Mar; 108(1):262. PubMed ID: 38483568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-containing residues from industry and in the environment: geobiotechnological urban mining.
    Glombitza F; Reichel S
    Adv Biochem Eng Biotechnol; 2014; 141():49-107. PubMed ID: 24916202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.
    Moriwaki H; Masuda R; Yamazaki Y; Horiuchi K; Miyashita M; Kasahara J; Tanaka T; Yamamoto H
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26524-26531. PubMed ID: 27657851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling.
    Bayo J; Esteban G; Castillo J
    Environ Technol; 2012; 33(7-9):761-72. PubMed ID: 22720399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption: a mechanistic approach.
    Tsezos M
    Adv Biochem Eng Biotechnol; 2014; 141():173-209. PubMed ID: 24368579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.