BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 14733615)

  • 1. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A.
    Yates SP; Merrill AR
    Biochem J; 2004 May; 379(Pt 3):563-72. PubMed ID: 14733615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry.
    Jørgensen R; Merrill AR; Yates SP; Marquez VE; Schwan AL; Boesen T; Andersen GR
    Nature; 2005 Aug; 436(7053):979-84. PubMed ID: 16107839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature and character of the transition state for the ADP-ribosyltransferase reaction.
    Jørgensen R; Wang Y; Visschedyk D; Merrill AR
    EMBO Rep; 2008 Aug; 9(8):802-9. PubMed ID: 18583986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the catalytic mechanism of Pseudomonas aeruginosa exotoxin A. Studies of toxin interaction with eukaryotic elongation factor-2.
    Armstrong S; Yates SP; Merrill AR
    J Biol Chem; 2002 Nov; 277(48):46669-75. PubMed ID: 12270928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the elucidation of the catalytic mechanism of the mono-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exotoxin A.
    Armstrong S; Merrill AR
    Biochemistry; 2004 Jan; 43(1):183-94. PubMed ID: 14705944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa.
    Yates SP; Taylor PL; Jørgensen R; Ferraris D; Zhang J; Andersen GR; Merrill AR
    Biochem J; 2005 Feb; 385(Pt 3):667-75. PubMed ID: 15458385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural complementation of the catalytic domain of pseudomonas exotoxin A.
    Boland EL; Van Dyken CM; Duckett RM; McCluskey AJ; Poon GM
    J Mol Biol; 2014 Feb; 426(3):645-55. PubMed ID: 24211469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stealth and mimicry by deadly bacterial toxins.
    Yates SP; Jørgensen R; Andersen GR; Merrill AR
    Trends Biochem Sci; 2006 Feb; 31(2):123-33. PubMed ID: 16406634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A re-evaluation of the role of histidine-426 within Pseudomonas aeruginosa exotoxin A.
    Roberts TM; Merrill AR
    Biochem J; 2002 Nov; 367(Pt 3):601-8. PubMed ID: 12160465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human single-chain antibodies that neutralize Pseudomonas aeruginosa-exotoxin A-mediated cellular apoptosis.
    Santajit S; Seesuay W; Mahasongkram K; Sookrung N; Ampawong S; Reamtong O; Diraphat P; Chaicumpa W; Indrawattana N
    Sci Rep; 2019 Oct; 9(1):14928. PubMed ID: 31624289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions.
    Mohammadi F; Prentice GA; Merrill AR
    Biochemistry; 2001 Aug; 40(34):10273-83. PubMed ID: 11513605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enzyme-linked immunosorbent assay for the association of the catalytic domain of diphthamide-specific ribosyltransferases to eukaryotic elongation factor-2.
    Prentice GA; Merrill AR
    Anal Biochem; 1999 Aug; 272(2):216-23. PubMed ID: 10415091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA; Collier RJ
    Curr Top Microbiol Immunol; 1992; 175():27-41. PubMed ID: 1628498
    [No Abstract]   [Full Text] [Related]  

  • 15. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity.
    Wedekind JE; Trame CB; Dorywalska M; Koehl P; Raschke TM; McKee M; FitzGerald D; Collier RJ; McKay DB
    J Mol Biol; 2001 Dec; 314(4):823-37. PubMed ID: 11734000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirecting Pseudomonas exotoxin.
    FitzGerald D; Pastan I
    Semin Cell Biol; 1991 Feb; 2(1):31-7. PubMed ID: 1954341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas exotoxin A mutants. Replacement of surface exposed residues in domain II with cysteine residues that can be modified with polyethylene glycol in a site-specific manner.
    Kuan CT; Wang QC; Pastan I
    J Biol Chem; 1994 Mar; 269(10):7610-6. PubMed ID: 8125985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin.
    Li M; Dyda F; Benhar I; Pastan I; Davies DR
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9308-12. PubMed ID: 7568123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of competitive inhibitors for the transferase activity of Pseudomonas aeruginosa exotoxin A.
    Armstrong S; Li JH; Zhang J; Merrill AR
    J Enzyme Inhib Med Chem; 2002 Aug; 17(4):235-46. PubMed ID: 12530476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the diphthamide-containing loop within eukaryotic elongation factor 2 in ADP-ribosylation by Pseudomonas aeruginosa exotoxin A.
    Zhang Y; Liu S; Lajoie G; Merrill AR
    Biochem J; 2008 Jul; 413(1):163-74. PubMed ID: 18373493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.