These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14734026)

  • 41. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae.
    Obara K; Noda T; Niimi K; Ohsumi Y
    Genes Cells; 2008 Jun; 13(6):537-47. PubMed ID: 18533003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Cytoplasm to vacuole targeting pathway in yeast].
    Shintani T
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(10 Suppl):1480-3. PubMed ID: 16922423
    [No Abstract]   [Full Text] [Related]  

  • 43. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway.
    Harding TM; Hefner-Gravink A; Thumm M; Klionsky DJ
    J Biol Chem; 1996 Jul; 271(30):17621-4. PubMed ID: 8663607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole.
    Lang T; Schaeffeler E; Bernreuther D; Bredschneider M; Wolf DH; Thumm M
    EMBO J; 1998 Jul; 17(13):3597-607. PubMed ID: 9649430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways.
    Huang WP; Scott SV; Kim J; Klionsky DJ
    J Biol Chem; 2000 Feb; 275(8):5845-51. PubMed ID: 10681575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway.
    Kim J; Scott SV; Oda MN; Klionsky DJ
    J Cell Biol; 1997 May; 137(3):609-18. PubMed ID: 9151668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.
    Dziedzic SA; Caplan AB
    Autophagy; 2011 May; 7(5):490-500. PubMed ID: 21317551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism.
    Scott SV; Baba M; Ohsumi Y; Klionsky DJ
    J Cell Biol; 1997 Jul; 138(1):37-44. PubMed ID: 9214379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction.
    Takeshige K; Baba M; Tsuboi S; Noda T; Ohsumi Y
    J Cell Biol; 1992 Oct; 119(2):301-11. PubMed ID: 1400575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Liquid droplet formation and cytoplasm to vacuole targeting of aminopeptidase I are temperature sensitive in Saccharomyces cerevisiae.
    Suzuki K; Hirata E
    FEBS Lett; 2023 Mar; 597(5):631-642. PubMed ID: 36217212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae.
    Straub M; Bredschneider M; Thumm M
    J Bacteriol; 1997 Jun; 179(12):3875-83. PubMed ID: 9190802
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisae.
    Hernández A; Serrano-Bueno G; Perez-Castiñeira JR; Serrano A
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt A):2945-56. PubMed ID: 26344037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.
    Delorme-Axford E; Guimaraes RS; Reggiori F; Klionsky DJ
    Methods; 2015 Mar; 75():3-12. PubMed ID: 25526918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae.
    Backues SK; Orban DP; Bernard A; Singh K; Cao Y; Klionsky DJ
    Traffic; 2015 Feb; 16(2):172-90. PubMed ID: 25385507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The fungicidal activity of amphotericin B requires autophagy-dependent targeting to the vacuole under a nutrient-starved condition in Saccharomyces cerevisiae.
    Yoshioka M; Yamada K; Yamaguchi Y; Ogita A; Fujita KI; Tanaka T
    Microbiology (Reading); 2016 May; 162(5):848-854. PubMed ID: 26940206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions.
    Mochida K; Ohsumi Y; Nakatogawa H
    FEBS Lett; 2014 Nov; 588(21):3862-9. PubMed ID: 25281559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assays for autophagy I: the Cvt pathway and nonselective autophagy.
    Huang WP; Shintani T; Xie Z
    Methods Mol Biol; 2014; 1163():153-64. PubMed ID: 24841304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. γ-Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae.
    Tatehashi Y; Watanabe D; Takagi H
    FEBS Lett; 2016 Sep; 590(17):2906-14. PubMed ID: 27442630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways.
    Kim J; Dalton VM; Eggerton KP; Scott SV; Klionsky DJ
    Mol Biol Cell; 1999 May; 10(5):1337-51. PubMed ID: 10233148
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism.
    Adamis PD; Mannarino SC; Riger CJ; Duarte G; Cruz A; Pereira MD; Eleutherio EC
    Biometals; 2009 Apr; 22(2):243-9. PubMed ID: 18716881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.