These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 14734316)
1. Graph-based clustering for finding distant relationships in a large set of protein sequences. Kawaji H; Takenaka Y; Matsuda H Bioinformatics; 2004 Jan; 20(2):243-52. PubMed ID: 14734316 [TBL] [Abstract][Full Text] [Related]
2. A graph-based clustering method for a large set of sequences using a graph partitioning algorithm. Kawaji H; Yamaguchi Y; Matsuda H; Hashimoto A Genome Inform; 2001; 12():93-102. PubMed ID: 11791228 [TBL] [Abstract][Full Text] [Related]
3. ProClust: improved clustering of protein sequences with an extended graph-based approach. Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002 [TBL] [Abstract][Full Text] [Related]
4. The metric space of proteins-comparative study of clustering algorithms. Sasson O; Linial N; Linial M Bioinformatics; 2002; 18 Suppl 1():S14-21. PubMed ID: 12169526 [TBL] [Abstract][Full Text] [Related]
5. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space. Loewenstein Y; Portugaly E; Fromer M; Linial M Bioinformatics; 2008 Jul; 24(13):i41-9. PubMed ID: 18586742 [TBL] [Abstract][Full Text] [Related]
6. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures. Pascual-García A; Abia D; Ortiz AR; Bastolla U PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884 [TBL] [Abstract][Full Text] [Related]
7. Clustering protein sequences--structure prediction by transitive homology. Bolten E; Schliep A; Schneckener S; Schomburg D; Schrader R Bioinformatics; 2001 Oct; 17(10):935-41. PubMed ID: 11673238 [TBL] [Abstract][Full Text] [Related]
8. Measuring the similarity of protein structures by means of the universal similarity metric. Krasnogor N; Pelta DA Bioinformatics; 2004 May; 20(7):1015-21. PubMed ID: 14751983 [TBL] [Abstract][Full Text] [Related]
9. Euclidian space and grouping of biological objects. Grishin VN; Grishin NV Bioinformatics; 2002 Nov; 18(11):1523-34. PubMed ID: 12424125 [TBL] [Abstract][Full Text] [Related]
10. Clustering of proximal sequence space for the identification of protein families. Abascal F; Valencia A Bioinformatics; 2002 Jul; 18(7):908-21. PubMed ID: 12117788 [TBL] [Abstract][Full Text] [Related]
11. Incremental generation of summarized clustering hierarchy for protein family analysis. Chen CY; Oyang YJ; Juan HF Bioinformatics; 2004 Nov; 20(16):2586-96. PubMed ID: 15130937 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm. Gibbons TR; Mount SM; Cooper ED; Delwiche CF BMC Bioinformatics; 2015 Jul; 16():218. PubMed ID: 26160651 [TBL] [Abstract][Full Text] [Related]
13. Align-m--a new algorithm for multiple alignment of highly divergent sequences. Van Walle I; Lasters I; Wyns L Bioinformatics; 2004 Jun; 20(9):1428-35. PubMed ID: 14962914 [TBL] [Abstract][Full Text] [Related]
14. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
15. The global trace graph, a novel paradigm for searching protein sequence databases. Heger A; Mallick S; Wilton C; Holm L Bioinformatics; 2007 Sep; 23(18):2361-7. PubMed ID: 17823134 [TBL] [Abstract][Full Text] [Related]
16. Index-based similarity search for protein structure databases. Camoglu O; Kahveci T; Singh AK J Bioinform Comput Biol; 2004 Mar; 2(1):99-126. PubMed ID: 15272435 [TBL] [Abstract][Full Text] [Related]
17. Improvements to CluSTr: the database of SWISS-PROT+TrEMBL protein clusters. Kriventseva EV; Servant F; Apweiler R Nucleic Acids Res; 2003 Jan; 31(1):388-9. PubMed ID: 12520029 [TBL] [Abstract][Full Text] [Related]
18. A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou's pseudo amino acid composition. Tripathi P; Pandey PN J Theor Biol; 2017 Jul; 424():49-54. PubMed ID: 28476562 [TBL] [Abstract][Full Text] [Related]
19. Pairwise protein structure alignment based on an orientation-independent backbone representation. Ye J; Janardan R; Liu S J Bioinform Comput Biol; 2004 Dec; 2(4):699-717. PubMed ID: 15617162 [TBL] [Abstract][Full Text] [Related]
20. A map of the protein space--an automatic hierarchical classification of all protein sequences. Yona G; Linial N; Tishby N; Linial M Proc Int Conf Intell Syst Mol Biol; 1998; 6():212-21. PubMed ID: 9783227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]