BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 14735251)

  • 1. An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk.
    Holt C
    Eur Biophys J; 2004 Aug; 33(5):421-34. PubMed ID: 14735251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein phosphopeptides.
    Little EM; Holt C
    Eur Biophys J; 2004 Aug; 33(5):435-47. PubMed ID: 14735250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative model of the bovine casein micelle: ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk.
    Bijl E; Huppertz T; van Valenberg H; Holt C
    Eur Biophys J; 2019 Jan; 48(1):45-59. PubMed ID: 30128695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt partition, ion equilibria, and the structure, composition, and solubility of micellar calcium phosphate in bovine milk with added calcium salts.
    Wang Q; Holt C; Nylander T; Ma Y
    J Dairy Sci; 2020 Nov; 103(11):9893-9905. PubMed ID: 32952031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of calcium and magnesium chlorides as simple means of varying bound and precipitated minerals in casein micelle: Effect on enzymatic coagulation.
    Bauland J; Famelart MH; Bouhallab S; Jeantet R; Roustel S; Faiveley M; Croguennec T
    J Dairy Sci; 2020 Nov; 103(11):9923-9935. PubMed ID: 32921475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of milk calcium salts by using casein phosphopeptide.
    Nakano T; Sugimoto Y; Ibrahim HR; Toba Y; Aoe S; Aoki T
    Prep Biochem Biotechnol; 2000 May; 30(2):155-66. PubMed ID: 10794185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.
    Malacarne M; Franceschi P; Formaggioni P; Sandri S; Mariani P; Summer A
    J Dairy Res; 2014 May; 81(2):129-36. PubMed ID: 24345431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of calcium and phosphate in artificial casein micelles.
    Zhang ZP; Fujii M; Aoki T
    J Dairy Sci; 1996 Oct; 79(10):1722-27. PubMed ID: 8923242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-mediated disruption of bovine casein micelles at alkaline pH.
    Vaia B; Smiddy MA; Kelly AL; Huppertz T
    J Agric Food Chem; 2006 Oct; 54(21):8288-93. PubMed ID: 17032041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.
    Holt C; Carver JA; Ecroyd H; Thorn DC
    J Dairy Sci; 2013 Oct; 96(10):6127-46. PubMed ID: 23958008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability of a beta-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters.
    Holt C; Wahlgren NM; Drakenberg T
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):1035-9. PubMed ID: 8615755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents.
    Udabage P; McKinnon IR; Augustin MA
    J Dairy Res; 2000 Aug; 67(3):361-70. PubMed ID: 11037232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of sedimentation field flow fractionation and photon correlation spectroscopy in the characterization of casein micelles.
    Udabage P; McKinnon IR; Augustin MA
    J Dairy Res; 2003 Nov; 70(4):453-9. PubMed ID: 14649417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein, casein, and micellar salts in milk: current content and historical perspectives.
    Bijl E; van Valenberg HJ; Huppertz T; van Hooijdonk AC
    J Dairy Sci; 2013 Sep; 96(9):5455-64. PubMed ID: 23849643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular structure of the casein micelle.
    McMahon DJ; Oommen BS
    J Dairy Sci; 2008 May; 91(5):1709-21. PubMed ID: 18420601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of micellar calcium phosphate-casein phosphopeptide complex.
    Aoki T; Nakano T; Iwashita T; Sugimoto Y; Ibraham HR; Toba Y; Aoe S; Nakajima I
    J Nutr Sci Vitaminol (Tokyo); 1998 Jun; 44(3):447-56. PubMed ID: 9742464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties.
    Holt C
    Eur Biophys J; 2021 Sep; 50(6):847-866. PubMed ID: 33866398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three kinetically different inorganic phosphate entities in bovine casein micelles revealed by isotopic exchange method and compartmental analysis.
    Kolar ZI; Verburg TG; van Dijk HJ
    J Inorg Biochem; 2002 May; 90(1-2):61-6. PubMed ID: 12009256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The minerals of milk.
    Gaucheron F
    Reprod Nutr Dev; 2005; 45(4):473-83. PubMed ID: 16045895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.