BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14735569)

  • 1. Continuous medium theory for nonequilibrium solvation: I. How to correctly evaluate solvation free energy of nonequilibrium.
    Li XY; Fu KX
    J Comput Chem; 2004 Mar; 25(4):500-9. PubMed ID: 14735569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous medium theory for nonequilibrium solvation: II. Interaction energy between solute charge and reaction field and single-sphere model for spectral shift.
    Li XY; Fu KX; Zhu Q; Shan MH
    J Comput Chem; 2004 Apr; 25(6):835-42. PubMed ID: 15011255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium solvation energy by means of constrained equilibrium thermodynamics and its application to self-exchange electron transfer reactions.
    Li XY; Wang QD; Wang JB; Ma JY; Fu KX; He FC
    Phys Chem Chem Phys; 2010 Feb; 12(6):1341-50. PubMed ID: 20119612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous medium theory for nonequilibrium solvation: IV. Solvent reorganization energy of electron transfer based on conductor-like screening model.
    Fu KX; Zhu Q; Li XY; Gong Z; Ma JY; He RX
    J Comput Chem; 2006 Feb; 27(3):368-74. PubMed ID: 16380944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous medium theory for nonequilibrium solvation: III. Solvation shift by monopole approximation and multipole expansion in spherical cavity.
    Zhu Q; Fu KX; Li XY; Gong Z; Ma JY
    J Comput Chem; 2005 Mar; 26(4):399-409. PubMed ID: 15651032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation dynamics of C153 in supercritical fluoroform: a simulation study based on two-site and five-site models of the solvent.
    Ingrosso F; Ladanyi BM
    J Phys Chem B; 2006 May; 110(20):10120-9. PubMed ID: 16706473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A time-dependent polarizable continuum model: theory and application.
    Caricato M; Ingrosso F; Mennucci B; Tomasi J
    J Chem Phys; 2005 Apr; 122(15):154501. PubMed ID: 15945639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: a molecular dynamics study.
    Hartnig C; Koper MT
    J Am Chem Soc; 2003 Aug; 125(32):9840-5. PubMed ID: 12904051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on orientation and absorption spectrum of interfacial molecules by using continuum model.
    Ma JY; Wang JB; Li XY; Huang Y; Zhu Q; Fu KX
    J Comput Chem; 2008 Jan; 29(2):198-210. PubMed ID: 17557282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecularly based theory for electron transfer reorganization energy.
    Zhuang B; Wang ZG
    J Chem Phys; 2015 Dec; 143(22):224502. PubMed ID: 26671385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation dynamics in acetonitrile: a study incorporating solute electronic response and nuclear relaxation.
    Ingrosso F; Ladanyi BM; Mennucci B; Elola MD; Tomasi J
    J Phys Chem B; 2005 Mar; 109(8):3553-64. PubMed ID: 16851393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium solvation dynamics.
    Shim Y; Choi MY; Kim HJ
    J Chem Phys; 2005 Jan; 122(4):44511. PubMed ID: 15740271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does Flory-Huggins theory help in interpreting solute partitioning experiments?
    Holtzer A
    Biopolymers; 1994 Mar; 34(3):315-20. PubMed ID: 8161708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF; Stassen H
    J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of excluded solvent volume effects in computing hydration free energies.
    Yang PK; Lim C
    J Phys Chem B; 2008 Nov; 112(47):14863-8. PubMed ID: 18956834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signatures of nonequilibrium solvation dynamics on multidimensional spectra.
    McRobbie PL; Hanna G; Shi Q; Geva E
    Acc Chem Res; 2009 Sep; 42(9):1299-309. PubMed ID: 19552404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.