These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 14735978)
41. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: VI. Partial charge neutralization drastically increases uptake rate. Zhao Y; Dong X; Yu L; Sun Y J Chromatogr A; 2016 Jan; 1427():102-10. PubMed ID: 26702591 [TBL] [Abstract][Full Text] [Related]
42. Developing a chromatographic column model for bovine serum albumin on strong anion-exchanger Source30Q using data from confocal laser scanning microscopy. Susanto A; Wekenborg K; Hubbuch J; Schmidt-Traub H J Chromatogr A; 2006 Dec; 1137(1):63-75. PubMed ID: 17055517 [TBL] [Abstract][Full Text] [Related]
43. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography. Li M; Li Y; Yu L; Sun Y J Chromatogr A; 2017 Feb; 1486():103-109. PubMed ID: 27852454 [TBL] [Abstract][Full Text] [Related]
44. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: III. Comparison between different proteins. Hong Y; Liu N; Wei W; Yu LL; Ma G; Sun Y J Chromatogr A; 2014 May; 1342():30-6. PubMed ID: 24685164 [TBL] [Abstract][Full Text] [Related]
45. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: II. effect of ionic strength. Yu LL; Sun Y J Chromatogr A; 2013 Aug; 1305():85-93. PubMed ID: 23885672 [TBL] [Abstract][Full Text] [Related]
46. Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography. Zhang S; Iskra T; Daniels W; Salm J; Gallo C; Godavarti R; Carta G Biotechnol Prog; 2017 Mar; 33(2):425-434. PubMed ID: 27997072 [TBL] [Abstract][Full Text] [Related]
47. Apolipoprotein A-I(Milano) anion exchange chromatography: mass transfer and adsorption kinetics. Bankston TE; Carta G Biotechnol J; 2010 Oct; 5(10):1040-9. PubMed ID: 20931600 [TBL] [Abstract][Full Text] [Related]
48. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. a critical ionic capacity for drastically enhanced capacity and uptake kinetics. Yu LL; Tao SP; Dong XY; Sun Y J Chromatogr A; 2013 Aug; 1305():76-84. PubMed ID: 23876766 [TBL] [Abstract][Full Text] [Related]
49. Protein adsorption to poly(ethylenimine)-modified sepharose FF: VII. Complicated effects of pH. Zhao Y; Yu L; Dong X; Sun Y J Chromatogr A; 2018 Dec; 1580():72-79. PubMed ID: 30473009 [TBL] [Abstract][Full Text] [Related]
50. Role of configurational flexibility on the adsorption kinetics of bivalent bispecific antibodies on porous cation exchange resins. Kimerer LK; Pabst TM; Hunter AK; Carta G J Chromatogr A; 2021 Oct; 1655():462479. PubMed ID: 34461348 [TBL] [Abstract][Full Text] [Related]
51. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: V. Complicated effects of counterions. Liu N; Yu L; Sun Y J Chromatogr A; 2015 Jul; 1404():44-50. PubMed ID: 26054560 [TBL] [Abstract][Full Text] [Related]
52. Chromatography of proteins on charge-variant ion exchangers and implications for optimizing protein uptake rates. Langford JF; Xu X; Yao Y; Maloney SF; Lenhoff AM J Chromatogr A; 2007 Sep; 1163(1-2):190-202. PubMed ID: 17640661 [TBL] [Abstract][Full Text] [Related]
53. Characterization of immunoglobulin adsorption on dextran-grafted hydrophobic charge-induction resins: Cross-effects of ligand density and pH/salt concentration. Liu T; Lin DQ; Zhang QL; Yao SJ J Chromatogr A; 2015 May; 1396():45-53. PubMed ID: 25892639 [TBL] [Abstract][Full Text] [Related]
54. Determinants of protein elution rates from preparative ion-exchange adsorbents. Angelo JM; Lenhoff AM J Chromatogr A; 2016 Apr; 1440():94-104. PubMed ID: 26948763 [TBL] [Abstract][Full Text] [Related]
55. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. Zhao G; Peng G; Li F; Shi Q; Sun Y J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830 [TBL] [Abstract][Full Text] [Related]
56. Protein adsorption and transport in cation exchangers with a rigid backbone matrix with and without polymeric surface extenders. Pérez Almodóvar EX; Tao Y; Carta G Biotechnol Prog; 2011; 27(5):1264-72. PubMed ID: 21608143 [TBL] [Abstract][Full Text] [Related]
57. Ligand distributions in agarose particles as determined by confocal Raman spectroscopy and confocal scanning laser microscopy. Larsson M; Lindgren J; Ljunglöf A; Knuuttila KG Appl Spectrosc; 2003 Mar; 57(3):251-5. PubMed ID: 14658615 [TBL] [Abstract][Full Text] [Related]
58. Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy. Siu SC; Boushaba R; Topoyassakul V; Graham A; Choudhury S; Moss G; Titchener-Hooker NJ Biotechnol Bioeng; 2006 Nov; 95(4):714-23. PubMed ID: 16817189 [TBL] [Abstract][Full Text] [Related]
59. Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent. Chen WD; Dong XY; Sun Y J Chromatogr A; 2002 Jul; 962(1-2):29-40. PubMed ID: 12198970 [TBL] [Abstract][Full Text] [Related]
60. Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes. Lu HL; Lin DQ; Zhu MM; Yao SJ J Sep Sci; 2012 Nov; 35(22):3084-90. PubMed ID: 22707393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]