BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 14736846)

  • 1. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb.
    Granados-Fuentes D; Prolo LM; Abraham U; Herzog ED
    J Neurosci; 2004 Jan; 24(3):615-9. PubMed ID: 14736846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A circadian clock in the olfactory bulb controls olfactory responsivity.
    Granados-Fuentes D; Tseng A; Herzog ED
    J Neurosci; 2006 Nov; 26(47):12219-25. PubMed ID: 17122046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro.
    Abraham U; Prior JL; Granados-Fuentes D; Piwnica-Worms DR; Herzog ED
    J Neurosci; 2005 Sep; 25(38):8620-6. PubMed ID: 16177029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms in isolated brain regions.
    Abe M; Herzog ED; Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD
    J Neurosci; 2002 Jan; 22(1):350-6. PubMed ID: 11756518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding Time Entrains the Olfactory Bulb Circadian Clock in Anosmic PER2::LUC Mice.
    Pavlovski I; Evans JA; Mistlberger RE
    Neuroscience; 2018 Nov; 393():175-184. PubMed ID: 30321586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light.
    Polidarová L; Sládek M; Novosadová Z; Sumová A
    Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resetting central and peripheral circadian oscillators in transgenic rats.
    Yamazaki S; Numano R; Abe M; Hida A; Takahashi R; Ueda M; Block GD; Sakaki Y; Menaker M; Tei H
    Science; 2000 Apr; 288(5466):682-5. PubMed ID: 10784453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biological clock nucleus: a multiphasic oscillator network regulated by light.
    Quintero JE; Kuhlman SJ; McMahon DG
    J Neurosci; 2003 Sep; 23(22):8070-6. PubMed ID: 12954869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators.
    Malloy JN; Paulose JK; Li Y; Cassone VM
    Am J Physiol Gastrointest Liver Physiol; 2012 Aug; 303(4):G461-73. PubMed ID: 22723262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle.
    Vansteensel MJ; Yamazaki S; Albus H; Deboer T; Block GD; Meijer JH
    Curr Biol; 2003 Sep; 13(17):1538-42. PubMed ID: 12956957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of photic stimuli disturbing overt circadian rhythms on the dorsomedial and ventrolateral SCN rhythmicity.
    Sumová A; Illnerová H
    Brain Res; 2005 Jun; 1048(1-2):161-9. PubMed ID: 15913573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aging on central and peripheral mammalian clocks.
    Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10801-6. PubMed ID: 12149444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis.
    Amir S; Lamont EW; Robinson B; Stewart J
    J Neurosci; 2004 Jan; 24(4):781-90. PubMed ID: 14749422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment of the master circadian clock by scheduled feeding.
    Castillo MR; Hochstetler KJ; Tavernier RJ; Greene DM; Bult-Ito A
    Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R551-5. PubMed ID: 15155280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.