These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14736891)

  • 1. A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast.
    Verho R; Putkonen M; Londesborough J; Penttilä M; Richard P
    J Biol Chem; 2004 Apr; 279(15):14746-51. PubMed ID: 14736891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene.
    Richard P; Putkonen M; Väänänen R; Londesborough J; Penttilä M
    Biochemistry; 2002 May; 41(20):6432-7. PubMed ID: 12009906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway.
    Richard P; Verho R; Putkonen M; Londesborough J; Penttilä M
    FEMS Yeast Res; 2003 Apr; 3(2):185-9. PubMed ID: 12702451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus.
    Yamasaki-Yashiki S; Komeda H; Hoshino K; Asano Y
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1612-1618. PubMed ID: 28471330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene.
    Richard P; Londesborough J; Putkonen M; Kalkkinen N; Penttilä M
    J Biol Chem; 2001 Nov; 276(44):40631-7. PubMed ID: 11514550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei.
    Metz B; Mojzita D; Herold S; Kubicek CP; Richard P; Seiboth B
    Biochemistry; 2013 Apr; 52(14):2453-60. PubMed ID: 23506391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.
    INGRAM JM; WOOD WA
    J Bacteriol; 1965 May; 89(5):1186-94. PubMed ID: 14292984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase.
    Seiboth B; Hartl L; Pail M; Kubicek CP
    Eukaryot Cell; 2003 Oct; 2(5):867-75. PubMed ID: 14555469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 'true' L-xylulose reductase of filamentous fungi identified in Aspergillus niger.
    Mojzita D; Vuoristo K; Koivistoinen OM; Penttilä M; Richard P
    FEBS Lett; 2010 Aug; 584(16):3540-4. PubMed ID: 20654618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, expression, and characterization of an arabitol dehydrogenase and coupled with NADH oxidase for effective production of L-xylulose.
    Zhu CY; Zhu YH; Zhou HP; Xu YY; Gao J; Zhang YW
    Prep Biochem Biotechnol; 2022; 52(5):590-597. PubMed ID: 34528864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitol-phosphate dehydrogenase.
    Soroka NV; Kulminskaya AA; Eneyskaya EV; Shabalin KA; Uffimtcev AV; Povelainen M; Miasnikov AN; Neustroev KN
    Carbohydr Res; 2005 Mar; 340(4):539-46. PubMed ID: 15721323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa.
    Bae B; Sullivan RP; Zhao H; Nair SK
    J Mol Biol; 2010 Sep; 402(1):230-40. PubMed ID: 20655316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.
    Sakakibara Y; Saha BC; Taylor P
    J Biosci Bioeng; 2009 May; 107(5):506-11. PubMed ID: 19393548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
    Watanabe S; Kodaki T; Makino K
    J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a salvage pathway for D-arabinose in Mycobacterium smegmatis.
    Wojtkiewicz B; Szmidzinski R; Jezierska A; Cocito C
    Eur J Biochem; 1988 Feb; 172(1):197-203. PubMed ID: 3126069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A short-chain dehydrogenase gene from Pichia stipitis having D-arabinitol dehydrogenase activity.
    Hallborn J; Walfridsson M; Penttilä M; Keränen S; Hahn-Hägerdal B
    Yeast; 1995 Jul; 11(9):839-47. PubMed ID: 7483848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.
    Mayer G; Kulbe KD; Nidetzky B
    Appl Biochem Biotechnol; 2002; 98-100():577-89. PubMed ID: 12018283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, characterization, and mutational analysis of a highly active and stable L-arabinitol 4-dehydrogenase from Neurospora crassa.
    Sullivan R; Zhao H
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):845-52. PubMed ID: 17938906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.