These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 14736996)

  • 1. The major 5' determinant in stop codon read-through involves two adjacent adenines.
    Tork S; Hatin I; Rousset JP; Fabret C
    Nucleic Acids Res; 2004; 32(2):415-21. PubMed ID: 14736996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae.
    Bonetti B; Fu L; Moon J; Bedwell DM
    J Mol Biol; 1995 Aug; 251(3):334-45. PubMed ID: 7650736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. eIF5A Functions Globally in Translation Elongation and Termination.
    Schuller AP; Wu CC; Dever TE; Buskirk AR; Green R
    Mol Cell; 2017 Apr; 66(2):194-205.e5. PubMed ID: 28392174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome.
    Hatin I; Fabret C; Namy O; Decatur WA; Rousset JP
    Genetics; 2007 Nov; 177(3):1527-37. PubMed ID: 17483428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the six nucleotides downstream of the stop codon on translation termination.
    Namy O; Hatin I; Rousset JP
    EMBO Rep; 2001 Sep; 2(9):787-93. PubMed ID: 11520858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon.
    van Hoof A; Frischmeyer PA; Dietz HC; Parker R
    Science; 2002 Mar; 295(5563):2262-4. PubMed ID: 11910110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate.
    Gorochowski TE; Ignatova Z; Bovenberg RA; Roubos JA
    Nucleic Acids Res; 2015 Mar; 43(6):3022-32. PubMed ID: 25765653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay.
    Shoemaker CJ; Eyler DE; Green R
    Science; 2010 Oct; 330(6002):369-72. PubMed ID: 20947765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis.
    Jan E; Kinzy TG; Sarnow P
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15410-5. PubMed ID: 14673072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough.
    Salas-Marco J; Bedwell DM
    J Mol Biol; 2005 May; 348(4):801-15. PubMed ID: 15843014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.
    Delgado-Olivares L; Zamora-Romo E; Guarneros G; Hernandez-Sanchez J
    Biochimie; 2006 Jul; 88(7):793-800. PubMed ID: 16488066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control.
    Grant CM; Hinnebusch AG
    Mol Cell Biol; 1994 Jan; 14(1):606-18. PubMed ID: 8264629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of stop codon readthrough genes in Saccharomyces cerevisiae.
    Namy O; Duchateau-Nguyen G; Hatin I; Hermann-Le Denmat S; Termier M; Rousset JP
    Nucleic Acids Res; 2003 May; 31(9):2289-96. PubMed ID: 12711673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular biology. Skiing toward nonstop mRNA decay.
    Maquat LE
    Science; 2002 Mar; 295(5563):2221-2. PubMed ID: 11910094
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of ribosome recycling factor (RRF) in translational coupling.
    Inokuchi Y; Hirashima A; Sekine Y; Janosi L; Kaji A
    EMBO J; 2000 Jul; 19(14):3788-98. PubMed ID: 10899132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1.
    Kojima KK; Matsumoto T; Fujiwara H
    Mol Cell Biol; 2005 Sep; 25(17):7675-86. PubMed ID: 16107714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous stop codon readthrough of metazoan readthrough candidates in yeast.
    Chan CS; Jungreis I; Kellis M
    PLoS One; 2013; 8(3):e59450. PubMed ID: 23544069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.