These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1473820)

  • 1. The effect of measurement conditions on MCG inverse solutions.
    Tan GA; Brauer F; Stroink G; Purcell CJ
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):921-7. PubMed ID: 1473820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model.
    Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ
    Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model.
    Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear inverse solutions: simulations from a realistic head model in MEG.
    Soufflet L; Boeijinga PH
    Brain Topogr; 2005; 18(2):87-99. PubMed ID: 16341577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of geometric and topologic differences in boundary element models on magnetocardiographic localization accuracy.
    Pesola K; Lötjönen J; Nenonen J; Magnin IE; Lauerma K; Fenici R; Katila T
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1237-47. PubMed ID: 11008425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving dipole inverse solutions using realistic torso models.
    Purcell CJ; Stroink G
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):82-4. PubMed ID: 2026436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between dipole parameter estimation errors and measurement conditions in magnetoencephalography.
    Ogura Y; Sekihara K
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):919-24. PubMed ID: 8288283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of torso geometry on magnetocardiographic isofield maps.
    Horacek BM; Purcell C; Lamothe R; Merritt R; Kafer C; Periyalwar S; Dey S; Leon LJ; Stroink G
    Phys Med Biol; 1987 Jan; 32(1):121-4. PubMed ID: 3823131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution of the inverse problem of magnetic induction tomography (MIT).
    Merwa R; Hollaus K; Brunner P; Scharfetter H
    Physiol Meas; 2005 Apr; 26(2):S241-50. PubMed ID: 15798237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MCG simulations with a realistic heart-torso model.
    Ramon C; Czapski P; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y; Nelson JA
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1323-31. PubMed ID: 9805831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomagnetic localization of electrical current sources in the human heart with realistic volume conductors using the single-current-dipole model.
    Bruder H; Killmann R; Moshage W; Weismüller P; Achenbach S; Bömmel F
    Phys Med Biol; 1994 Apr; 39(4):655-68. PubMed ID: 15552076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the contribution of volume currents to the total magnetic field resulting from the heart excitation process: a simulation study.
    Czapski P; Ramon C; Huntsman LL; Bardy GH; Kim Y
    IEEE Trans Biomed Eng; 1996 Jan; 43(1):95-104. PubMed ID: 8567010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inverse problem in electrocardiography: solutions in terms of epicardial potentials.
    Rudy Y; Messinger-Rapport BJ
    Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of head shape variations among individuals on the EEG/MEG forward and inverse problems.
    von Ellenrieder N; Muravchik CH; Wagner M; Nehorai A
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):587-97. PubMed ID: 19389682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confidence limits of dipole source reconstruction results.
    Fuchs M; Wagner M; Kastner J
    Clin Neurophysiol; 2004 Jun; 115(6):1442-51. PubMed ID: 15134713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MCG simulations of myocardial infarctions with a realistic heart-torso model.
    Czapski P; Ramon C; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1313-22. PubMed ID: 9805830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of a dipolar source in a skull phantom: realistic versus spherical model.
    Menninghaus E; Lütkenhöner B; Gonzalez SL
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):986-9. PubMed ID: 7959806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetocardiographic localization of arrhythmia substrates: a methodology study with accessory pathway ablation as reference.
    Agren PL; Göranson H; Hindmarsh T; Knutsson E; Mohlkert D; Rosenqvist M; Bergfeldt L
    IEEE Trans Med Imaging; 1998 Jun; 17(3):479-85. PubMed ID: 9735912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.