These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 14738347)

  • 1. Effects of haptic feedback and turbulence on landing performance using an immersive cave automatic virtual environment (CAVE).
    Repperger DW; Gilkey RH; Green R; LaFleur T; Haas MW
    Percept Mot Skills; 2003 Dec; 97(3 Pt 1):820-32. PubMed ID: 14738347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering in a virtual environment.
    Noor AK; Ellis SR
    Aerosp Am; 1996 Jul; 34(7):32-7. PubMed ID: 11539335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a haptic stick interface as a pilot's assistant in a high turbulence task environment.
    Repperger DW; Haas MW; Brickman BJ; Hettinger LJ; Lu L; Roe MM
    Percept Mot Skills; 1997 Dec; 85(3 Pt 2):1139-54. PubMed ID: 9450264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of visual and haptic feedback during training of lower extremities.
    Koritnik T; Koenig A; Bajd T; Riener R; Munih M
    Gait Posture; 2010 Oct; 32(4):540-6. PubMed ID: 20727763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of a character posture model on the communication of affect in an immersive virtual environment.
    Vinayagamoorthy V; Steed A; Slater M
    IEEE Trans Vis Comput Graph; 2008; 14(5):965-82. PubMed ID: 18599911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtually-augmented interfaces for tactical aircraft.
    Haas MW
    Biol Psychol; 1995 May; 40(1-2):229-38. PubMed ID: 7647184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury.
    Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic proprioception in a virtual locomotor task.
    Karunakaran K; Abbruzzese K; Xu H; Ehrenberg N; Foulds R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3594-7. PubMed ID: 25570768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent haptic feedback is required but it is not enough for natural reaching to virtual cylinders.
    Cuijpers RH; Brenner E; Smeets JB
    Hum Mov Sci; 2008 Dec; 27(6):857-72. PubMed ID: 18834640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.
    Lemole GM; Banerjee PP; Luciano C; Neckrysh S; Charbel FT
    Neurosurgery; 2007 Jul; 61(1):142-8; discussion 148-9. PubMed ID: 17621029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction and exploration of three-dimensional confocal microscopy data in an immersive virtual environment.
    Ai Z; Chen X; Rasmussen M; Folberg R
    Comput Med Imaging Graph; 2005 Jul; 29(5):313-8. PubMed ID: 15893451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of visual and haptic feedback on computer-assisted needle insertion.
    Gerovich O; Marayong P; Okamura AM
    Comput Aided Surg; 2004; 9(6):243-9. PubMed ID: 16112974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of eye movement and cognition during simulated landing of aircraft.
    Liu ZQ; Yuan XG; Liu W; Wang R
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):379-80. PubMed ID: 12449149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic action in virtual environments: constraints on the accessibility of action knowledge in children and adults.
    Daum MM; Krist H
    Q J Exp Psychol (Hove); 2009 Feb; 62(2):335-51. PubMed ID: 18609407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.