These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 14738588)
1. Exposure of the yeast Candida albicans to the anti-neoplastic agent adriamycin increases the tolerance to amphotericin B. O'Keeffe J; Doyle S; Kavanagh K J Pharm Pharmacol; 2003 Dec; 55(12):1629-33. PubMed ID: 14738588 [TBL] [Abstract][Full Text] [Related]
2. Adriamycin alters the expression of drug efflux pumps and confers amphotericin B tolerance in Candida albicans. O'Keeffe J; Kavanagh K Anticancer Res; 2004; 24(2A):405-8. PubMed ID: 15152937 [TBL] [Abstract][Full Text] [Related]
3. Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Geraghty P; Kavanagh K Arch Microbiol; 2003 Apr; 179(4):295-300. PubMed ID: 12640519 [TBL] [Abstract][Full Text] [Related]
4. Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans. Geraghty P; Kavanagh K J Pharm Pharmacol; 2003 Feb; 55(2):179-84. PubMed ID: 12631409 [TBL] [Abstract][Full Text] [Related]
5. High-dose methylprednisolone influences the physiology and virulence of Candida albicans ambiguously and enhances the candidacidal activity of the polyene antibiotic amphotericin B and the superoxide-generating agent menadione. Gyetvai A; Emri T; Fekete A; Varga Z; Gazdag Z; Pesti M; Belágyi J; Emõdy L; Pócsi I; Lenkey B FEMS Yeast Res; 2007 Mar; 7(2):265-75. PubMed ID: 17266730 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Haynes MP; Chong PL; Buckley HR; Pieringer RA Biochemistry; 1996 Jun; 35(24):7983-92. PubMed ID: 8672502 [TBL] [Abstract][Full Text] [Related]
7. The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. Borjihan H; Ogita A; Fujita K; Hirasawa E; Tanaka T J Antibiot (Tokyo); 2009 Dec; 62(12):691-7. PubMed ID: 19876074 [TBL] [Abstract][Full Text] [Related]
9. Modulatory effect of cAMP on fungal ergosterol level and inhibitory activity of azole drugs. Sardari S; Mori Y; Kurosawa T; Daneshtalab M Can J Microbiol; 2003 May; 49(5):344-9. PubMed ID: 12897828 [TBL] [Abstract][Full Text] [Related]
10. A new in-vitro kinetic model to study the pharmacodynamics of antifungal agents: inhibition of the fungicidal activity of amphotericin B against Candida albicans by voriconazole. Lignell A; Johansson A; Löwdin E; Cars O; Sjölin J Clin Microbiol Infect; 2007 Jun; 13(6):613-9. PubMed ID: 17378925 [TBL] [Abstract][Full Text] [Related]
11. Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Kumar R; Shukla PK Fungal Biol; 2010; 114(2-3):189-97. PubMed ID: 20943129 [TBL] [Abstract][Full Text] [Related]
12. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. An M; Shen H; Cao Y; Zhang J; Cai Y; Wang R; Jiang Y Int J Antimicrob Agents; 2009 Mar; 33(3):258-63. PubMed ID: 19095412 [TBL] [Abstract][Full Text] [Related]
13. In vitro activity of 2-cyclohexylidenhydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of Candida spp. and fluconazole-resistant Candida albicans. De Logu A; Saddi M; Cardia MC; Borgna R; Sanna C; Saddi B; Maccioni E J Antimicrob Chemother; 2005 May; 55(5):692-8. PubMed ID: 15772140 [TBL] [Abstract][Full Text] [Related]
14. Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans. Yutani M; Ogita A; Usuki Y; Fujita K; Tanaka T J Antibiot (Tokyo); 2011 Jul; 64(7):469-74. PubMed ID: 21522157 [TBL] [Abstract][Full Text] [Related]
15. Anti-Candida albicans effectiveness of citral and investigation of mode of action. Lima IO; de Medeiros Nóbrega F; de Oliveira WA; de Oliveira Lima E; Albuquerque Menezes E; Cunha FA; Formiga Melo Diniz Mde F Pharm Biol; 2012 Dec; 50(12):1536-41. PubMed ID: 23116193 [TBL] [Abstract][Full Text] [Related]
16. The efficiency of the benzothiazole APB, the echinocandin micafungin, and amphotericin B in fluconazole-resistant Candida albicans and Candida dubliniensis. Melkusová S; Bujdáková H; Volleková A; Myoken Y; Mikami Y Pharmazie; 2004 Jul; 59(7):573-4. PubMed ID: 15296100 [TBL] [Abstract][Full Text] [Related]
17. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Phillips AJ; Sudbery I; Ramsdale M Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14327-32. PubMed ID: 14623979 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the inhibitory effect of voriconazole on the fungicidal activity of amphotericin B against Candida albicans in an in vitro kinetic model. Lignell A; Löwdin E; Cars O; Sjölin J J Antimicrob Chemother; 2008 Jul; 62(1):142-8. PubMed ID: 18408237 [TBL] [Abstract][Full Text] [Related]
19. Synergic effect of grape seed extract with amphotericin B against disseminated candidiasis due to Candida albicans. Han Y Phytomedicine; 2007 Nov; 14(11):733-8. PubMed ID: 17913484 [TBL] [Abstract][Full Text] [Related]
20. Susceptibilities to amphotericin B and fluconazole of Candida species in TSARY 2002. Yang YL; Li SY; Cheng HH; Lo HJ; Diagn Microbiol Infect Dis; 2005 Mar; 51(3):179-83. PubMed ID: 15766603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]