These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14739269)

  • 1. Catalase activity and expression in developing sunflower seeds as related to drying.
    Bailly C; Leymarie J; Lehner A; Rousseau S; Côme D; Corbineau F
    J Exp Bot; 2004 Feb; 55(396):475-83. PubMed ID: 14739269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro photoinactivation of catalase isoforms from cotyledons of sunflower (Helianthus annuus L.).
    Grotjohann N; Janning A; Eising R
    Arch Biochem Biophys; 1997 Oct; 346(2):208-18. PubMed ID: 9343368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation.
    Oracz K; El-Maarouf Bouteau H; Farrant JM; Cooper K; Belghazi M; Job C; Job D; Corbineau F; Bailly C
    Plant J; 2007 May; 50(3):452-65. PubMed ID: 17376157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation.
    Pena LB; Azpilicueta CE; Gallego SM
    J Trace Elem Med Biol; 2011 Jul; 25(3):125-9. PubMed ID: 21696931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression of coffee seed oxidation and germination processes during drying.
    Santos GC; Von Pinho EV; Rosa SD
    Genet Mol Res; 2013 Dec; 12(4):6968-82. PubMed ID: 24391045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in lipid status and glass properties in cotyledons of developing sunflower seeds.
    Lehner A; Corbineau F; Bailly C
    Plant Cell Physiol; 2006 Jul; 47(7):818-28. PubMed ID: 16707505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs.
    Prieto-Dapena P; Castaño R; Almoguera C; Jordano J
    Plant J; 2008 Jun; 54(6):1004-14. PubMed ID: 18315542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality.
    Bailly C; Audigier C; Ladonne F; Wagner MH; Coste F; Corbineau F; Côme D
    J Exp Bot; 2001 Apr; 52(357):701-8. PubMed ID: 11413206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat seedlings as a model to understand desiccation tolerance and sensitivity.
    Farrant JM; Bailly C; Leymarie J; Hamman B; Côme D; Corbineau F
    Physiol Plant; 2004 Apr; 120(4):563-574. PubMed ID: 15032818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds.
    Garnczarska M; Bednarski W; Jancelewicz M
    Plant Physiol Biochem; 2009 Jan; 47(1):56-62. PubMed ID: 18945622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks.
    Radchuk R; Radchuk V; Götz KP; Weichert H; Richter A; Emery RJ; Weschke W; Weber H
    Plant J; 2007 Sep; 51(5):819-39. PubMed ID: 17692079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of active NADP(+) phosphatase in dormant seeds of Avena sativa L.
    Gallais S; de Crescenzo MA; Laval-Martin DL
    J Exp Bot; 2000 Aug; 51(349):1389-94. PubMed ID: 10944152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP.
    Leymarie J; Bruneaux E; Gibot-Leclerc S; Corbineau F
    J Exp Bot; 2007; 58(3):425-37. PubMed ID: 17175551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal variations in salicylic acid and hydrogen peroxide in sunflower seeds during transition from dormancy to germination.
    Vigliocco A; Del Bel Z; Pérez-Chaca MV; Molina A; Zirulnik F; Andrade AM; Alemano S
    Physiol Plant; 2020 May; 169(1):27-39. PubMed ID: 31670838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds.
    Amari K; Díaz-Vivancos P; Pallás V; Sánchez-Pina MA; Hernández JA
    Physiol Plant; 2007 Oct; 131(2):302-10. PubMed ID: 18251901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds.
    Troncoso-Ponce MA; Rivoal J; Venegas-Calerón M; Dorion S; Sánchez R; Cejudo FJ; Garcés R; Martínez-Force E
    Phytochemistry; 2012 Jul; 79():27-38. PubMed ID: 22552275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.
    Luna CM; Pastori GM; Driscoll S; Groten K; Bernard S; Foyer CH
    J Exp Bot; 2005 Jan; 56(411):417-23. PubMed ID: 15569704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize.
    Mylona PV; Polidoros AN; Scandalios JG
    J Exp Bot; 2007; 58(6):1301-12. PubMed ID: 17314079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mature Amaranthus hypochondriacus seeds contain non-processed 11S precursors.
    Molina MI; Circosta A; Añón MC; Petruccelli S
    Phytochemistry; 2008 Jan; 69(1):58-65. PubMed ID: 17714748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L.
    Tkalec M; Malarić K; Pevalek-Kozlina B
    Sci Total Environ; 2007 Dec; 388(1-3):78-89. PubMed ID: 17825879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.