These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14739329)

  • 1. Role of Phe283 in enzymatic reaction of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp.1011: Substrate binding and arrangement of the catalytic site.
    Kanai R; Haga K; Akiba T; Yamane K; Harata K
    Protein Sci; 2004 Feb; 13(2):457-65. PubMed ID: 14739329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011.
    Haga K; Kanai R; Sakamoto O; Aoyagi M; Harata K; Yamane K
    J Biochem; 2003 Dec; 134(6):881-91. PubMed ID: 14769878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four aromatic residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of replacements on substrate binding and cyclization characteristics.
    Nakamura A; Haga K; Yamane K
    Biochemistry; 1994 Aug; 33(33):9929-36. PubMed ID: 8061001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases.
    Strokopytov B; Penninga D; Rozeboom HJ; Kalk KH; Dijkhuizen L; Dijkstra BW
    Biochemistry; 1995 Feb; 34(7):2234-40. PubMed ID: 7857935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1.
    Xie T; Song B; Yue Y; Chao Y; Qian S
    J Biotechnol; 2014 Jan; 170():10-6. PubMed ID: 24246271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011 complexed with 1-deoxynojirimycin at 2.0 A resolution.
    Kanai R; Haga K; Yamane K; Harata K
    J Biochem; 2001 Apr; 129(4):593-8. PubMed ID: 11275559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization.
    Nakamura A; Haga K; Yamane K
    Biochemistry; 1993 Jul; 32(26):6624-31. PubMed ID: 8329389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 A resolution.
    Ishii N; Haga K; Yamane K; Harata K
    J Biochem; 2000 Mar; 127(3):383-91. PubMed ID: 10731709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity.
    Penninga D; Strokopytov B; Rozeboom HJ; Lawson CL; Dijkstra BW; Bergsma J; Dijkhuizen L
    Biochemistry; 1995 Mar; 34(10):3368-76. PubMed ID: 7880832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of asparagine 233-replaced cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011 determined at 1.9 A resolution.
    Ishii N; Haga K; Yamane K; Harata K
    J Mol Recognit; 2000; 13(1):35-43. PubMed ID: 10679895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.
    Uitdehaag JC; van Alebeek GJ; van Der Veen BA; Dijkhuizen L; Dijkstra BW
    Biochemistry; 2000 Jul; 39(26):7772-80. PubMed ID: 10869182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.
    van der Veen BA; Uitdehaag JC; Penninga D; van Alebeek GJ; Smith LM; Dijkstra BW; Dijkhuizen L
    J Mol Biol; 2000 Mar; 296(4):1027-38. PubMed ID: 10686101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of a family 20 carbohydrate-binding module (CBM20) with cyclodextrin glycosyltransferase of Geobacillus sp. CHB1 improves catalytic efficiency.
    Jia X; Guo Y; Lin X; You M; Lin C; Chen L; Chen J
    J Basic Microbiol; 2017 Jun; 57(6):471-480. PubMed ID: 28422446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans.
    Li Z; Huang M; Gu Z; Holler TP; Cheng L; Hong Y; Li C
    Int J Biol Macromol; 2016 Feb; 83():111-6. PubMed ID: 26608005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and alpha-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues.
    Nakamura A; Haga K; Ogawa S; Kuwano K; Kimura K; Yamane K
    FEBS Lett; 1992 Jan; 296(1):37-40. PubMed ID: 1346117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of a mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin.
    Xie T; Hou Y; Li D; Yue Y; Qian S; Chao Y
    J Biotechnol; 2014 Jul; 182-183():92-6. PubMed ID: 24637377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis.
    Klein C; Hollender J; Bender H; Schulz GE
    Biochemistry; 1992 Sep; 31(37):8740-6. PubMed ID: 1390660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).
    Han R; Liu L; Shin HD; Chen RR; Du G; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5851-60. PubMed ID: 23129181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge.
    Leemhuis H; Rozeboom HJ; Dijkstra BW; Dijkhuizen L
    Proteins; 2004 Jan; 54(1):128-34. PubMed ID: 14705029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1.
    Wind RD; Buitelaar RM; Dijkhuizen L
    Eur J Biochem; 1998 May; 253(3):598-605. PubMed ID: 9654055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.