These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 14739331)
41. Navigation and analysis of the energy landscape of small proteins using the activation-relaxation technique. Mousseau N; Derreumaux P; Gilbert G Phys Biol; 2005 Nov; 2(4):S101-7. PubMed ID: 16280615 [TBL] [Abstract][Full Text] [Related]
42. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. Mukherjee A; Bagchi B J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287 [TBL] [Abstract][Full Text] [Related]
43. Directed transport as a mechanism for protein folding in vivo. González-Candela E; Romero-Rochín V J Chem Phys; 2010 Jan; 132(3):035103. PubMed ID: 20095753 [TBL] [Abstract][Full Text] [Related]
44. Computer simulation of the distribution of hexane in a lipid bilayer: spatially resolved free energy, entropy, and enthalpy profiles. MacCallum JL; Tieleman DP J Am Chem Soc; 2006 Jan; 128(1):125-30. PubMed ID: 16390139 [TBL] [Abstract][Full Text] [Related]
45. Exploring the protein G helix free-energy surface by solute tempering metadynamics. Camilloni C; Provasi D; Tiana G; Broglia RA Proteins; 2008 Jun; 71(4):1647-54. PubMed ID: 18076039 [TBL] [Abstract][Full Text] [Related]
46. The ultimate speed limit to protein folding is conformational searching. Ghosh K; Ozkan SB; Dill KA J Am Chem Soc; 2007 Oct; 129(39):11920-7. PubMed ID: 17824609 [TBL] [Abstract][Full Text] [Related]
47. Probe-dependent and nonexponential relaxation kinetics: unreliable signatures of downhill protein folding. Hagen SJ Proteins; 2007 Jul; 68(1):205-17. PubMed ID: 17387735 [TBL] [Abstract][Full Text] [Related]
48. Tuning lambda6-85 towards downhill folding at its melting temperature. Liu F; Gruebele M J Mol Biol; 2007 Jul; 370(3):574-84. PubMed ID: 17532338 [TBL] [Abstract][Full Text] [Related]
49. Characterization of protein-folding pathways by reduced-space modeling. Kmiecik S; Kolinski A Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132 [TBL] [Abstract][Full Text] [Related]
50. Binding free energy calculations for P450cam-substrate complexes. Paulsen MD; Ornstein RL Protein Eng; 1996 Jul; 9(7):567-71. PubMed ID: 8844828 [TBL] [Abstract][Full Text] [Related]
51. Solution of Levinthal's Paradox and a Physical Theory of Protein Folding Times. Ivankov DN; Finkelstein AV Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32041303 [TBL] [Abstract][Full Text] [Related]
52. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. Rydzewski J; Nowak W J Chem Theory Comput; 2016 Apr; 12(4):2110-20. PubMed ID: 26989997 [TBL] [Abstract][Full Text] [Related]
53. A study on the enthalpy-entropy compensation in protein unfolding. Liu L; Yang C; Guo QX Biophys Chem; 2000 May; 84(3):239-51. PubMed ID: 10852311 [TBL] [Abstract][Full Text] [Related]
54. Cell dynamics of folding in two-dimensional model proteins. Cieplak M; Banavar JR Fold Des; 1997; 2(4):235-45. PubMed ID: 9269564 [TBL] [Abstract][Full Text] [Related]
55. Cunning simplicity of protein folding landscapes. Bogatyreva NS; Finkelstein AV Protein Eng; 2001 Aug; 14(8):521-3. PubMed ID: 11579218 [TBL] [Abstract][Full Text] [Related]
58. From Levinthal to pathways to funnels. Dill KA; Chan HS Nat Struct Biol; 1997 Jan; 4(1):10-9. PubMed ID: 8989315 [TBL] [Abstract][Full Text] [Related]
59. From Levinthal's Paradox to the Effects of Cell Environmental Perturbation on Protein Folding. Zeng J; Huang Z Curr Med Chem; 2019; 26(42):7537-7554. PubMed ID: 30332937 [TBL] [Abstract][Full Text] [Related]