These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 14740010)

  • 1. Evidence for the presence of the Kennedy and Bremer- Greenberg pathways in Caenorhabditis elegans.
    Lochnit G; Geyer R
    Acta Biochim Pol; 2003; 50(4):1239-43. PubMed ID: 14740010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis.
    Houston KM; Sutharsan R; Steiger CN; Schachter H; Harnett W
    Mol Biochem Parasitol; 2008 Jan; 157(1):88-91. PubMed ID: 17920136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PCome of Caenorhabditis elegans as a prototypic model system for parasitic nematodes: identification of phosphorylcholine-substituted proteins.
    Grabitzki J; Ahrend M; Schachter H; Geyer R; Lochnit G
    Mol Biochem Parasitol; 2008 Oct; 161(2):101-11. PubMed ID: 18652849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First identification of a phosphorylcholine-substituted protein from Caenorhabditis elegans: isolation and characterization of the aspartyl protease ASP-6.
    Lochnit G; Grabitzki J; Henkel B; Tavernarakis N; Geyer R
    Biol Chem; 2006; 387(10-11):1487-93. PubMed ID: 17081123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching new targets for anthelminthic strategies: Interference with glycosphingolipid biosynthesis and phosphorylcholine metabolism affects development of Caenorhabditis elegans.
    Lochnit G; Bongaarts R; Geyer R
    Int J Parasitol; 2005 Jul; 35(8):911-23. PubMed ID: 15885697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylcholine substituents in nematodes: structures, occurrence and biological implications.
    Lochnit G; Dennis RD; Geyer R
    Biol Chem; 2000; 381(9-10):839-47. PubMed ID: 11076016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides.
    Cipollo JF; Awad A; Costello CE; Robbins PW; Hirschberg CB
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3404-8. PubMed ID: 14993596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycomes of Caenorhabditis elegans and other model organisms.
    Haslam SM; Gems D; Morris HR; Dell A
    Biochem Soc Symp; 2002; (69):117-34. PubMed ID: 12655779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the role of phosphomethylethanolamine N-methyltransferase from Caenorhabditis elegans in phosphocholine biosynthesis by biochemical and kinetic analysis.
    Palavalli LH; Brendza KM; Haakenson W; Cahoon RE; McLaird M; Hicks LM; McCarter JP; Williams DJ; Hresko MC; Jez JM
    Biochemistry; 2006 May; 45(19):6056-65. PubMed ID: 16681378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved ion and amino acid transporters identified as phosphorylcholine-modified N-glycoproteins by metabolic labeling with propargylcholine in Caenorhabditis elegans cells.
    Snodgrass CJ; Burnham-Marusich AR; Meteer JC; Berninsone PM
    Glycobiology; 2015 Apr; 25(4):403-11. PubMed ID: 25387872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the hydrophobic glycoproteins of Caenorhabditis elegans.
    Fan X; She YM; Bagshaw RD; Callahan JW; Schachter H; Mahuran DJ
    Glycobiology; 2005 Oct; 15(10):952-64. PubMed ID: 15888633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of wheat germ agglutinin ligand on soluble glycoproteins in Caenorhabditis elegans.
    Natsuka S; Kawaguchi M; Wada Y; Ichikawa A; Ikura K; Hase S
    J Biochem; 2005 Aug; 138(2):209-13. PubMed ID: 16091596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae.
    Gutierrez A; Sommer RJ
    Nucleic Acids Res; 2004; 32(21):6388-96. PubMed ID: 15576683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes.
    Nikolaou S; Gasser RB
    Parasitology; 2007 Apr; 134(Pt 4):461-82. PubMed ID: 17107637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caenorhabditis elegans: a versatile platform for drug discovery.
    Artal-Sanz M; de Jong L; Tavernarakis N
    Biotechnol J; 2006 Dec; 1(12):1405-18. PubMed ID: 17109493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans.
    Kampkötter A; Nkwonkam CG; Zurawski RF; Timpel C; Chovolou Y; Wätjen W; Kahl R
    Toxicology; 2007 May; 234(1-2):113-23. PubMed ID: 17376580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans.
    Kampkötter A; Gombitang Nkwonkam C; Zurawski RF; Timpel C; Chovolou Y; Wätjen W; Kahl R
    Arch Toxicol; 2007 Dec; 81(12):849-58. PubMed ID: 17551714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-glycosylation pattern of Caenorhabditis elegans.
    Paschinger K; Gutternigg M; Rendić D; Wilson IB
    Carbohydr Res; 2008 Aug; 343(12):2041-9. PubMed ID: 18226806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans.
    Hanneman AJ; Rosa JC; Ashline D; Reinhold VN
    Glycobiology; 2006 Sep; 16(9):874-90. PubMed ID: 16769777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making sense of glycosphingolipids in epithelial polarity.
    Hyenne V; Labouesse M
    Nat Cell Biol; 2011 Sep; 13(10):1185-7. PubMed ID: 21926989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.