These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 14740738)
1. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Hahn MW; O'Meliae CR Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738 [TBL] [Abstract][Full Text] [Related]
2. Aquasols: on the role of secondary minima. Hahn MW; Abadzic D; O'Melia CR Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589 [TBL] [Abstract][Full Text] [Related]
3. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Franchi A; O'Melia CR Environ Sci Technol; 2003 Mar; 37(6):1122-9. PubMed ID: 12680664 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Shen C; Li B; Huang Y; Jin Y Environ Sci Technol; 2007 Oct; 41(20):6976-82. PubMed ID: 17993137 [TBL] [Abstract][Full Text] [Related]
5. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
6. Mechanism comparisons of transport-deposition-reentrainment between microplastics and natural mineral particles in porous media: A theoretical and experimental study. Wang Y; Xie Y; Fan W; Yang Z; Tan W; Huo M; Huo Y Sci Total Environ; 2022 Dec; 850():157998. PubMed ID: 35964749 [TBL] [Abstract][Full Text] [Related]
7. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Li X; Zhang P; Lin CL; Johnson WP Environ Sci Technol; 2005 Jun; 39(11):4012-20. PubMed ID: 15984777 [TBL] [Abstract][Full Text] [Related]
8. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media. Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838 [TBL] [Abstract][Full Text] [Related]
9. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Bradford SA; Torkzaban S; Walker SL Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302 [TBL] [Abstract][Full Text] [Related]
10. Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Shen C; Jin Y; Li B; Zheng W; Huang Y Sci Total Environ; 2014 Jan; 466-467():1094-102. PubMed ID: 24013017 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical approach to model multilayer colloidal deposition in porous media. Kulkarni P; Sureshkumar R; Biswas P Environ Sci Technol; 2005 Sep; 39(17):6361-70. PubMed ID: 16190188 [TBL] [Abstract][Full Text] [Related]
12. Synergies of media surface roughness and ionic strength on particle deposition during filtration. Jin C; Zhao W; Normani SD; Zhao P; Emelko MB Water Res; 2017 May; 114():286-295. PubMed ID: 28254646 [TBL] [Abstract][Full Text] [Related]
13. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707 [TBL] [Abstract][Full Text] [Related]
14. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Ma H; Pazmino E; Johnson WP Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388 [TBL] [Abstract][Full Text] [Related]
15. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling. Jin C; Normani SD; Emelko MB Environ Sci Technol; 2015 Jul; 49(13):7879-88. PubMed ID: 26053116 [TBL] [Abstract][Full Text] [Related]
16. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Tufenkji N; Elimelech M Environ Sci Technol; 2004 Jan; 38(2):529-36. PubMed ID: 14750730 [TBL] [Abstract][Full Text] [Related]
17. A robust upscaling of the effective particle deposition rate in porous media. Boccardo G; Crevacore E; Sethi R; Icardi M J Contam Hydrol; 2018 May; 212():3-13. PubMed ID: 28965708 [TBL] [Abstract][Full Text] [Related]
18. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces. Shen C; Wang F; Li B; Jin Y; Wang LP; Huang Y Langmuir; 2012 Oct; 28(41):14681-92. PubMed ID: 23006065 [TBL] [Abstract][Full Text] [Related]
19. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279 [TBL] [Abstract][Full Text] [Related]
20. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model. Li K; Ma H Langmuir; 2019 Apr; 35(16):5471-5483. PubMed ID: 30925063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]